Exponenciális kisimítás

Slides:



Advertisements
Hasonló előadás
Szimmetriák szerepe a szilárdtestfizikában
Advertisements

Kauzális modellek Randall Munroe.
A TUDOMÁNYOS KUTATÁS MÓDSZERTANA
2.1Jelátalakítás - kódolás
Az úttervezési előírások változásai
Fizika II..
Számítógépes Hálózatok
Profitmaximalizálás  = TR – TC
A járműfenntartás valószínűségi alapjai
Szenzorok Bevezetés és alapfogalmak
Végeselemes modellezés matematikai alapjai
A magas baleseti kockázatú útszakaszok rangsorolása
Szerkezetek Dinamikája
MÉZHAMISÍTÁS.
Hőtan BMegeenatmh 5. Többfázisú rendszerek
BMEGEENATMH Hőátadás.
AUTOMATIKAI ÉPÍTŐELEMEK Széchenyi István Egyetem
Skandináv dizájn Hisnyay – Heinzelmann Luca FG58PY.
VÁLLALATI Pénzügyek 2 – MM
Hőtan BMEGEENATMH 4. Gázkörfolyamatok.
Szerkezetek Dinamikája
Összeállította: Polák József
A TUDOMÁNYOS KUTATÁS MÓDSZERTANA
Csáfordi, Zsolt – Kiss, Károly Miklós – Lengyel, Balázs
Tisztelt Hallgatók! Az alábbi példamegoldások segítségével felkészülhetnek a 15 pontos zárthelyi dolgozatra, ahol azt kell majd bizonyítaniuk, hogy a vállalati.
J. Caesar hatalomra jutása atl. 16d
Anyagforgalom a vizekben
Kováts András MTA TK KI Menedék Egyesület
Az eljárás megindítása; eljárási döntések az eljárás megindítása után
Melanóma Hakkel Tamás PPKE-ITK
Az új közbeszerzési szabályozás – jó és rossz gyakorlatok
Képzőművészet Zene Tánc
Penicillin származékok szabadgyökös reakciói
Boros Sándor, Batta Gyula
Bevezetés az alvás-és álomkutatásba
Kalandozások az álomkutatás területén
TANKERÜLETI (JÁRÁSI) SZAKÉRTŐI BIZOTTSÁG
Nemzetközi tapasztalatok kihűléssel kapcsolatban
Gajdácsi József Főigazgató-helyettes
Követelmények Szorgalmi időszakban:
Brachmann Krisztina Országos Epidemiológiai Központ
A nyelvtechnológia eszközei és nyersanyagai 2016/ félév
Járványügyi teendők meningococcus betegség esetén
Kezdetek októberében a könyvtár TÁMOP (3.2.4/08/01) pályázatának keretében vette kezdetét a Mentori szolgálat.
Poszt transzlációs módosulások
Vitaminok.
A sebész fő ellensége: a vérzés
Pharmanex ® Bone Formula
Data Mining Machine Learning a gyakorlatban - eszközök és technikák
VÁLLALATI PÉNZÜGYEK I. Dr. Tóth Tamás.
Pontos, precíz és hatékony elméleti módszerek az anion-pi kölcsönhatási energiák számítására modell szerkezetekben előadó: Mezei Pál Dániel Ph. D. hallgató.
Bevezetés a pszichológiába
MOSZKVA ZENE: KALINKA –HELMUT LOTTI AUTOMATA.
Bőrimpedancia A bőr fajlagos ellenállásának és kapacitásának meghatározása Impedancia (Z): Ohmos ellenállást, frekvenciafüggő elemeket (kondenzátort, tekercset)
Poimenika SRTA –
Végeselemes modellezés matematikai alapjai
Összefoglalás.
Az energiarendszerek jellemzői, hatékonysága
Varga Júlia MTA KRTK KTI Szirák,
Konzerváló fogászat Dr. Szabó Balázs
Outlier detektálás nagyméretű adathalmazokon
További MapReduce szemelvények: gráfproblémák
Ráhagyások, Mérés, adatgyűjtés
Járműcsarnokok technológiai méretezése
Grafikai művészet Victor Vasarely Maurits Cornelis Escher.
VÁLLALATI PÉNZÜGYEK I. Dr. Tóth Tamás.
RÉSZEKRE BONTOTT SOKASÁG VIZSGÁLATA
Az anyagok fejlesztésével a méretek csökkennek [Feynman, 1959].
Bevezetés a színek elméletébe és a fényképezéssel kapcsolatos fogalmak
Minőségmenedzsment alapjai
Előadás másolata:

Exponenciális kisimítás Üzleti tervezés statisztikai alapjai

Múlt-Jelen-Jövő kapcsolat Egyensúlyi helyzet Teljes konfliktus Részleges konfliktus: 0 < α < 1, folytatódik a múlt, de nem változatlanul módosítás: legfrissebb információnak adja a legnagyobb súlyt, minél távolabb van, annál kisebb a súly - exponenciális kisimítás módszere - harmónikus súlyozású résztrendek módszere

Simító eljárások Jellemzők: Sajátos helyet foglalnak el az idősormodellek között. A valószínűségi megalapozottságot nélkülözik. Hosszú távú elemzést elvetik. Mozgóátlagolással való rokonság.

Alapvető filozófiája Igazodás – negatív visszacsatolás Tanulás – előrejelzések hibáiból Pályakorrekció – folyamatos

Simító eljárások kialakulása A 60’-as években fejlődtek ki. Üzleti statisztikán belül alkalmazták. Gyors térnyerés. Áttekinthető Egyszerű logika Kis számításigény

Simító eljárások előnyei Elméleti háttér bonyolult. Bonyolultság ellenére alkalmazásuk egyszerű. Adattárolási igényük kicsi. Egyszerű alkalmazhatóság. A modellek becslését csak egyszer kell elvégezni. Sokirányú fejlődési lehetőség.

Exponenciális kisimítás Elve: a t-edik időszak adatának kialakulásában a legutolsó megfigyeléseknek nagyobb szerepük van, mint a korábbi értékeknek. A legfrissebb értékek relatíve nagyobb súlyt kapnak. Típusai: Egyszeres simítás Kétszeres simítás

Egyszeres exponenciális kisimítás Jellemzői: Trendmentes Szezonalitást nem tartalmaz Közel állandó tendenciájú ingadozásokkal rendelkezik Stacionárius idősorokra alkalmazható.

Egyszeres simítás egyenlete α: Kiegyenlítési konstans 0 ≤ α ≥ 1 Megválasztása részben elméleti közelítéssel, részben statisztikai módszerekkel, vagy a legkisebb négyzetek módszere segítségével. Ha α értéke kicsi, a hibát elhanyagoljuk. Ha α értéke nagy, az előrejelzés átveszi a hibákat. Előrejelzés:

Kettős exponenciális kisimítás Jellemzői: A lineáris trendet követő idősorok simítására és előrejelzésére alkalmas. Brown-féle kettő simítás. Az egyszer kisimított sort ismételten kisimítjuk. Az előrejelzés még így is torzított, viszont lényegesen kisebb.

Kettős exponenciális kisimítás Egyenlete Előrejelzés:

Harmónikus súlyozású résztrendek módszere Legfontosabb a legutolsó résztrend, minél korábbi, annál kisebb súly 1) lineáris résztrendek halmazát képezzük n: tagszám k: részszakaszok tagszáma Számítható résztrendek száma: n-k+1

2) Súlyrendszer h1= 1 𝑛−1 h2=h1+ 1 𝑛−2 … stb. h1-t a legelső résztrend kapja Ƹ ht = n-1 Előnye: Tompítja a véletlenek zavaró hatását Biztosítja az eltérő súlyrendszert

n= 5, k=3 ŷ1=15+0,5t ŷ2=15,7+1,5t ŷ3=51/3+1t t y ŷ1 ŷ2 ŷ3 ȳ résztrendek átlaga dt (ȳ1-ȳ0) változások wt (%) 1 15 14,5 - 2 14 14,2 14,6 + 0,1 6,25 =0,25/4 3 16 15,5 15,7 +1,1 14,583 =0,5833/4 4 17 17,1 17,05 +1,35 27,083 = 1,0833/4 5 18 +0,95 52,084 =2,08333/4 3,5 100,0

4. d súlya: 1 𝑛−1 + 1 𝑛−2 + 1 𝑛−3 + 1 𝑛−4 =1,08333+1= 1,083333 4. d súlya: 1 𝑛−1 + 1 𝑛−2 + 1 𝑛−3 + 1 𝑛−4 =1,08333+1= 2,083333 Ƹ ht= n-1 = 3,999  4

d átlag: Ƹ wt x dt 0,0625x0,1 + 0,14583 x 1,1 + 0,27083 x 1,35 + 0,52084 x 0,95 = 1,0270815 Évről-évre várható bekövetkező változás. Előrejelzés: 18 + 1,027 = 19,027

Előrejelzési modellek összehasonlítása Módszer Főbb jellemzői Alkalmazási területei Előnyei Hátrányai Megbízható előrejelzések időtávja Mozgó átlagolás A trendet az idősor dinamikus átlagaként állítja elő Készletgazdálkodás Egyszerű Matematikailag kevésbé megbízható 1-2 hónap, negyedév Analitikus trendszámítás Az alapirányzatot valamilyen matematikai függvény segítségével írja le Technológiai fejlődés vizsgálata, termék prognózis, műszaki paraméterek előrejelzése Egyszerű, áttekinthető, grafikusan jól ábrázolható A múlt fejlődését túlértékeli Rövidtáv, középtáv Harmonikus résztrendek Nagyobb súlyt kapnak azok az adatok, amelyek fokozottabb jelentőséggel bírnak Teremék prognózis, piaci prognózis Lehetőségünk van szakmai tapasztalat érvényesítésére A prognózis értékek bekerülnek a modellbe Rövidtáv, néhány negyedév Exponenciális kiegyenlítés A vizsgált időszak résztendenciáinak ad különböző súlyokat Foglalkoztatottak alakulásának elemzése, technológiai fejlődés vizsgálata, kereslet-forgalom alakulása Rövid távon megbízható Könnyen mechanikussá válhat az előrejelzés