MINTAVÉTEL, LEÍRÓ STATISZTIKA

Slides:



Advertisements
Hasonló előadás
Szimmetriák szerepe a szilárdtestfizikában
Advertisements

Kauzális modellek Randall Munroe.
A TUDOMÁNYOS KUTATÁS MÓDSZERTANA
2.1Jelátalakítás - kódolás
Az úttervezési előírások változásai
Fizika II..
Számítógépes Hálózatok
Profitmaximalizálás  = TR – TC
A járműfenntartás valószínűségi alapjai
Szenzorok Bevezetés és alapfogalmak
Végeselemes modellezés matematikai alapjai
A magas baleseti kockázatú útszakaszok rangsorolása
Szerkezetek Dinamikája
MÉZHAMISÍTÁS.
Hőtan BMegeenatmh 5. Többfázisú rendszerek
BMEGEENATMH Hőátadás.
AUTOMATIKAI ÉPÍTŐELEMEK Széchenyi István Egyetem
Skandináv dizájn Hisnyay – Heinzelmann Luca FG58PY.
VÁLLALATI Pénzügyek 2 – MM
Hőtan BMEGEENATMH 4. Gázkörfolyamatok.
Szerkezetek Dinamikája
Összeállította: Polák József
A TUDOMÁNYOS KUTATÁS MÓDSZERTANA
Csáfordi, Zsolt – Kiss, Károly Miklós – Lengyel, Balázs
Tisztelt Hallgatók! Az alábbi példamegoldások segítségével felkészülhetnek a 15 pontos zárthelyi dolgozatra, ahol azt kell majd bizonyítaniuk, hogy a vállalati.
J. Caesar hatalomra jutása atl. 16d
Anyagforgalom a vizekben
Kováts András MTA TK KI Menedék Egyesület
Az eljárás megindítása; eljárási döntések az eljárás megindítása után
Melanóma Hakkel Tamás PPKE-ITK
Az új közbeszerzési szabályozás – jó és rossz gyakorlatok
Képzőművészet Zene Tánc
Penicillin származékok szabadgyökös reakciói
Boros Sándor, Batta Gyula
Bevezetés az alvás-és álomkutatásba
Kalandozások az álomkutatás területén
TANKERÜLETI (JÁRÁSI) SZAKÉRTŐI BIZOTTSÁG
Nemzetközi tapasztalatok kihűléssel kapcsolatban
Gajdácsi József Főigazgató-helyettes
Követelmények Szorgalmi időszakban:
Brachmann Krisztina Országos Epidemiológiai Központ
A nyelvtechnológia eszközei és nyersanyagai 2016/ félév
Járványügyi teendők meningococcus betegség esetén
Kezdetek októberében a könyvtár TÁMOP (3.2.4/08/01) pályázatának keretében vette kezdetét a Mentori szolgálat.
Poszt transzlációs módosulások
Vitaminok.
A sebész fő ellensége: a vérzés
Pharmanex ® Bone Formula
Data Mining Machine Learning a gyakorlatban - eszközök és technikák
VÁLLALATI PÉNZÜGYEK I. Dr. Tóth Tamás.
Pontos, precíz és hatékony elméleti módszerek az anion-pi kölcsönhatási energiák számítására modell szerkezetekben előadó: Mezei Pál Dániel Ph. D. hallgató.
Bevezetés a pszichológiába
MOSZKVA ZENE: KALINKA –HELMUT LOTTI AUTOMATA.
Bőrimpedancia A bőr fajlagos ellenállásának és kapacitásának meghatározása Impedancia (Z): Ohmos ellenállást, frekvenciafüggő elemeket (kondenzátort, tekercset)
Poimenika SRTA –
Végeselemes modellezés matematikai alapjai
Összefoglalás.
Az energiarendszerek jellemzői, hatékonysága
Varga Júlia MTA KRTK KTI Szirák,
Konzerváló fogászat Dr. Szabó Balázs
Outlier detektálás nagyméretű adathalmazokon
További MapReduce szemelvények: gráfproblémák
Ráhagyások, Mérés, adatgyűjtés
Járműcsarnokok technológiai méretezése
Grafikai művészet Victor Vasarely Maurits Cornelis Escher.
VÁLLALATI PÉNZÜGYEK I. Dr. Tóth Tamás.
RÉSZEKRE BONTOTT SOKASÁG VIZSGÁLATA
Az anyagok fejlesztésével a méretek csökkennek [Feynman, 1959].
Bevezetés a színek elméletébe és a fényképezéssel kapcsolatos fogalmak
Minőségmenedzsment alapjai
Előadás másolata:

MINTAVÉTEL, LEÍRÓ STATISZTIKA Gazdaságstatisztika MINTAVÉTEL, LEÍRÓ STATISZTIKA 2016. október 11. , október 13.

Sokaság: a vizsgálat tárgyát képező egységek összessége Matematikai statisztika lényege Sokaság: a vizsgálat tárgyát képező egységek összessége Következtetés A megfigyelési eredmények a minta elemei, a megfigyelések száma a minta nagysága vagy elemszáma. A minta elemei az alapsokaság eloszlásával megegyező eloszlású valószínűségi változók. Minta: valamely valószínűségi változóra vonatkozó véges számú független kísérlet vagy megfigyelés (mérés) eredménye Mintavétel Mintavétel: a statisztikai sokaságból információszerzés céljából véletlenszerűen egyedi elemeket emelünk ki

Statisztikai módszertan ágai LEÍRÓ vagy DESKRIPTÍV statisztika Tömör, számszerű jellemzés: a megfigyelt adatok legjobb megértésére, bemutatására, összefoglalására törekszik. KÖVETKEZTETŐ statisztika Fő célja a mintából való következtetés, általánosítás a teljes sokaságra vonatkozóan.

Leíró statisztika Főbb területei: adatgyűjtés adatok ábrázolása adatok csoportosítása, osztályozása adatokkal végzett egyszerűbb aritmetikai műveletek eredmények megjelenítése

Adatok csoportosítása, osztályozása Egy mennyiségi ismérv szerinti rendezés és osztályozás X mennyiségi ismérv (változó), Xi (ismérv)érték Rangsor A rangsor a megfigyelési egységeknek és/vagy azokhoz tartozó Xi ismérvértékeknek monoton nemcsökkenő sorrendben történő felsorolása. Készítésének célja: megkönnyítse a sokaság egységeinek X változó szerinti osztályozását Osztályozás Gyakorisági sor, gyakorisági eloszlás

Adatok csoportosítása, osztályozása Az X szerint képzett osztály Osztály- közép abszolút relatív alsó felső gyakoriság határa X10 X11 X1* f1 g1 X20 X21 X2* f2 g2 Xi0 Xi1 Xi* fi gi … Xk0 Xk1 Xk* fk gk Összesen N 1 Osztályközhosszúság:

Adatok csoportosítása, osztályozása X ismérv szerinti osztályozás kérdései: Az X változó diszkrét, és az általa felvehető értékek száma kicsi Annyi osztályt képezünk ahány különböző X érték lehetséges az i-edik osztály esetében fennáll az alsó és felső osztályhatár egybeesése Az X változó folytonos, vagy diszkrét ugyan, de az általa felvehető különböző értékek száma nagy X lehetséges értékeinek tartományát osztályközökre bontjuk az i-edik osztályköz Xi1 felső határa nem eshet egybe az (i+1)-dik osztályköz Xi+1,0 alsó határával Hány osztályt képezzünk? Az osztályok számának és határainak egy bizonyos sávon belüli változtatása nem nagyon befolyásolja a grafikus képet. (5-15 osztály)

Adatok csoportosítása, osztályozása Gyakorisági táblázat készítése Osztályba sorolás (folytonos adatok és nagyszámú diszkrét adat esetében) Gyakoriságok (fi) megállapítása Relatív gyakoriságok (gi) megállapítása Összegzett (kumulált) gyakoriságok (fi’) és kumulált relatív gyakoriságok (gi’) meghatározása: 𝑓 𝑟 ′ = 𝑖=1 𝑟 𝑓 𝑖 Gyakorisági táblázat készítése az fi, gi, fi’, gi’ adatokból Gyakorisági (relatív gyakorisági), illetve összegzett relatív gyakorisági hisztogramok felvétele, azaz a tapasztalati eloszlások elkészítése Folytonos esetben: poligon és ogiva Grafikus ábrázolás

Adatok csoportosítása, osztályozása  

Példa – kevés számú diszkrét adat A Gazdaságstatisztika c. tárgyat a 2012 őszi félévben felvett hallgatók érdemjegyeinek gyakorisági táblázata Diszkrét ismérv által felvehető értékek pálcikadiagram lépcső alakú diagram

Pálcikadiagram – diszkrét adat Érdemjegy Tapasztalati gyakoriság (fi) Relatív gyakoriság (gi) 1 68 0,089 2 280 0,368 3 274 0,361 4 91 0,120 5 47 0,062 Összesen 760

Kumulált tapasztalati gyakoriság (fi) Kumulált relatív gyakoriság (gi) Lépcső alakú diagram Érdemjegy Kumulált tapasztalati gyakoriság (fi) Kumulált relatív gyakoriság (gi) 1 68 0,089 2 348 0,458 3 622 0,818 4 713 0,938 5 760

Példa – nagy számú folytonos adat hónap hozam 2005. március -7,188% 2007. április 8,200% 2009. május 14,878% 2011. június -2,963% 2005. április -4,360% 2007. május 4,917% 2009. június 2,533% 2011. július -4,857% 2005. május 3,185% 2007. június 7,997% 2009. július 12,038% 2011. augusztus -15,731% 2005. június 10,292% 2007. július 1,152% 2009. augusztus 11,520% 2011. szeptember -15,778% 2005. július 10,053% 2007. augusztus -6,569% 2009. szeptember 4,223% 2011. október 10,947% 2005. augusztus 4,021% 2007. szeptember 3,616% 2009. október 1,698% 2011. november 0,196% 2005. szeptember 6,182% 2007. október -3,696% 2009. november 1,132% 2011. december -3,817% 2005. október -11,159% 2007. november -6,113% 2009. december 1,999% 2012. január 10,699% 2005. november 3,112% 2007. december 1,836% 2010. január 2,808% 2012. február 2,072% 2005. december -1,857% 2008. január -11,116% 2010. február -2,616% 2012. március -3,433% 2006. január 6,599% 2008. február 0,111% 2010. március 13,104% 2012. április -2,173% 2006. február 4,480% 2008. március -7,927% 2010. április 2,119% 2012. május -12,454% 2006. március -0,669% 2008. április 3,986% 2010. május -11,369% 2012. június 7,427% 2006. április 5,447% 2008. május -0,057% 2010. június -4,881% 2012. július 0,385% 2006. május -13,671% 2008. június -10,216% 2010. július 5,612% 2012. augusztus 0,606% 2006. június 0,764% 2008. július 8,558% 2010. augusztus 1,320% 2012. szeptember 5,956% 2006. július 5,398% 2008. augusztus -5,564% 2010. szeptember 2,963% 2012. október 3,343% 2006. augusztus -2,072% 2008. szeptember -10,735% 2010. október -0,402% 2012. november -5,098% 2006. szeptember -1,713% 2008. október -33,440% 2010. november -11,464% 2012. december -0,505% 2006. október 2,883% 2008. november -6,192% 2010. december 3,276% 2013. január 6,368% 2006. november 2,161% 2008. december -3,634% 2011. január 6,280% 2013. február -2,950% 2006. december 8,234% 2009. január -6,110% 2011. február 1,946% 2013. március -5,170% 2007. január -3,210% 2009. február -12,233% 2011. március -0,414% 2013. április 2,372% 2007. február -2,902% 2009. március 8,298% 2011. április 4,667% 2013. május 5,203% 2007. március 0,222% 2009. április 15,066% 2011. május -3,304% 2013. június -1,247%

Példa – nagy számú folytonos adat Rangsor -15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558% A teljes értékköz: 30,844 (%)

Példa – nagy számú folytonos adat osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   összesen GYAKORISÁGI TÁBLÁZAT

Példa- a gyakorisági táblázat adatainak értelmezése Alsó határ Felső határ fi fi’ gi gi’ -5% 0% 23 43 23,23% 43,43% fi: A BUX index hozama 23 hónapban volt -5% és 0% között fi’: A BUX index hozama 43 hónapban volt 0%-nál kisebb gi: A BUX index hozama a megfigyelt hónapok 23,23 %-ban (99-ből 23 hónapban) volt -5% és 0% között gi’: A BUX index hozama a megfigyelt hónapok 43,43%-ban volt 0%-nál kisebb

Gyakorisági hisztogram alsó határ felső határ osztályközép gi [%] -20,00% -15,00% -17,5% 2,02% -10,00% -12,5% 9,09% -5,00% -7,5% 0,00% -2,5% 23,23% 5,00% 2,5% 32,32% 10,00% 7,5% 15,15% 15,00% 12,5% 8,08% 20,00% 17,5% 1,01% összesen   100,00% GYAKORISÁGI HISZTOGRAM (tapasztalati (empirikus) sűrűségfüggvény) Gyakoriság vonaldiagramja

Gyakorisági vonaldiagram Gyakorisági görbe

Kumulált relatív gyakorisági hisztogram alsó határ felső határ osztályközép g’i [%] -20,00% -15,00% -17,5% 2,02% -10,00% -12,5% 11,11% -5,00% -7,5% 20,20% 0,00% -2,5% 43,43% 5,00% 2,5% 75,76% 10,00% 7,5% 90,91% 15,00% 12,5% 98,99% 20,00% 17,5% 100,00% összesen   Kumulált relatív gyakoriság vonaldiagramja KUMULÁLT RELATÍV GYAKORISÁGI HISZTOGRAM

Kumulált relatív gyakoriság vonaldiagramja KUMULÁLT RELATÍV GYAKORISÁG VONALDIAGRAMJA (tapasztalati eloszlásfüggvény) Ogiva

Leíró statisztikai mutatószámok Helyzetmutatók, középértékek: Az eloszlás helyzetét egyetlen, az adatokkal azonos mértékegységű számértékkel jellemzik Ingadozásmutatók: Az adathalmaz szóródása, változékonysága Az adatok egymás közötti különbségei Kitüntetett értéktől való eltérés, ingadozás valamilyen középérték körül

Helyzetmutatók (középértékek) Csoportosításuk: Helyzeti középértékek: az adatok közötti elhelyezkedésüknél fogva jellemzik a vizsgált gyakorisági eloszlás helyzetét medián, módusz Számított középértékek: az adatokkal kapcsolatos számszerű összefüggésük révén jellemzik a vizsgált gyakorisági eloszlás helyzetét számtani átlag, mértani átlag, négyzetes átlag, harmonikus átlag Elvárások: Közepes helyzetűek Tipikusak Egyértelműen meghatározhatóak Könnyen értelmezhetőek

Medián me annak a legelső osztályköznek a sorszáma, amelyre igaz, hogy helyzeti középérték mutató a változó azon számértéke, amelynél az összes előforduló számérték fele kisebb, fele pedig nagyobb, így a rangsorba állított sokasági számértékeket két egyenlő gyakoriságú osztályra bontja Becsülhető osztályközös gyakorisági sorból is: Előnye: Mindig egyértelműen meghatározható Érzéketlen a szélsőértékekre, és nem függ a többi ismérvértéktől sem. Hátránya: Nem használható, ha az adatsorban sok az egyforma ismérvérték Egyéb tulajdonsága: A mediánt tartalmazó osztály bal végpontja. A mediánt tartalmazó osztály hossza. ha

Példa – diszkrét eset 6, 8, 4, 9, 7, 3, 5 3, 4, 5, 6, 7, 8, 9 Me=6 4, 9, 7, 8, 11, 5 4, 5, 7, 8, 9, 11 Me=7+8/2=7,5 760 adat  380. és 381. adat számtani átlaga a medián Medián értéke: 3

Példa – folytonos eset 99 adat  50. adat a medián (49 ennél kisebb, 49 ennél nagyobb) Medián értéke: 1,132%

N/2=49,5  a mediánt tartalmazó osztály az ötödik osztály: Példa – folytonos eset Medián becslése osztályközös gyakorisági sorból: No. osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   összesen N/2=49,5  a mediánt tartalmazó osztály az ötödik osztály: 0,00% ≤ x < 5,00%.

Módusz mo a legnagyobb gyakoriságú osztály(ok) sorszáma Hátránya: helyzeti középérték, a tipikus ismérvérték diszkrét ismérv esetén a módusz a leggyakrabban előforduló ismérvérték, folytonos ismérv esetén a gyakorisági görbe maximumhelye. Előnye: érzéketlen a szélsőértékekre, nem függ sem az összes, sem a kiugró ismérvértékektől. Hátránya: nem mindig határozható meg egyértelműen, és nem is mindig létezik nagy bizonytalansággal becsülhető Egyéb tulajdonsága: nyers módusz, osztályköz megválasztása Becsülhető osztályközös gyakorisági sorból is: A móduszt tartalmazó osztály bal végpontja. A móduszt tartalmazó osztály hossza. mo a legnagyobb gyakoriságú osztály(ok) sorszáma

Példa – diszkrét eset Az elégséges érdemjegy gyakorisága a legnagyobb (280 db), így a módusz értéke 2.

Példa – folytonos eset A legnagyobb gyakoriságú osztály az 5. sorszámú: 0,00% ≤ x < 5,00%. No. osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   összesen

Számtani átlag számított középértékfajta az a szám, amellyel az átlagolandó számértékeket helyettesítve azok összege változatlan marad. Számítása: Előnye: bármely alapadathalmazból egyértelműen meghatározható, minden alapadatot felhasznál Hátránya: érzékeny a szélsőértékekre  nyesett átlag Tulajdonsága: 𝑿 𝒎𝒊𝒏 ≤ 𝑿 ≤ 𝑿 𝒎𝒂𝒙 !!!

Számtani átlag Egyéb fontos tulajdonsága: minimális, ha

Példa – diszkrét eset

Példa – folytonos eset -15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

Példa – folytonos példa osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   összesen

Szorgalmi feladat 1 pont Egy vasútvonalon egy hétig minden vonaton feljegyezték az utasok számát. Az eredményeket az alábbi táblázat tartalmazza: Számítsa ki a mediánt, a móduszt és az átlagos utasszámot! Utasok száma Vonatok száma 𝟎≤𝒙≤𝟑𝟎 6 𝟑𝟎<𝑿≤𝟔𝟎 12 𝟔𝟎<𝒙≤𝟗𝟎 28 𝟗𝟎<𝑿≤𝟏𝟐𝟎 30 𝟏𝟐𝟎<𝑿≤𝟏𝟓𝟎 16 𝟏𝟓𝟎<𝑿<≤𝟏𝟖𝟎 8

Harmonikus átlag számított középértékmutató, az a szám, amellyel az átlagolandó értékeket helyettesítve azok reciprokainak összege változatlan marad Alkalmazása: ha az értékek reciprokainak összege értelmezhető, leíró statisztikai viszonyszámok és indexszámítás

Mértani átlag számított középértékmutató, az a szám, amellyel az átlagolandó értékeket helyettesítve azok szorzata változatlan marad Alkalmazása: ha az értékek szorzata értelmezhető, illetve az átlagolandó értékek exponenciálisan nőnek vagy csökkennek az időbeli fejlődés átlagos ütemének vizsgálatakor Pl. populációk egyedszáma idősor-elemzés

Négyzetes átlag számított középérték-mutató, az a szám, amellyel az átlagolandó értékeket helyettesítve azok négyzetösszege változatlan marad Hátránya: a kiugróan magas értékekre érzékenyen reagál Alkalmazása: ha az előjeleknek nincs jelentősége szórásszámítás

Kvantilisek a rangsorban olyan osztópontok (osztályhatárok), amelyek egyenlő relatív gyakoriságokat fognak közre Az Xi/k i-edik k-ad rendű kvantilis az a szám, amelynél az összes előforduló ismérvértékek i/k-ad része kisebb, (1-i/k)-ad része pedig nagyobb, ahol k≥2 és i=1, 2 ,…, k-1.

Példa – folytonos eset -15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

Példa – Kvantilisek becslése No. Osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó Határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   Összesen

Ingadozásmutatók (szóródásmutatók) Csoportosításuk: Az adathalmazban szereplő értékek változékonyságát az egyes értékek egymás közötti különbségein, vagy egyes értékeknek egy kitüntetett értéktől (középérték) való eltérésein keresztül ragadja meg. Mértékegységüket tekintve: Abszolút mutatók: mértékegysége megegyezik az alapadatokéval Relatív mutatók: mértékegység nélküli [%]

Terjedelem Interkvantilis terjedelem a szóródást az adathalmazban szereplő legnagyobb és legkisebb adat különbségeként jellemzi abszolút ingadozásmutató Előnye: a könnyű számítás Hátránya: értéke csak a két legszélsőségesebb ismérvértéktől függ, amelyeket sokszor a véletlen szeszélyeinek köszönhetünk. Interkvantilis terjedelem csökkenti a véletlen szélsőértékeket (legkisebb és legnagyobb értéket) alakító szerepét az adathalmaz két szélső k-adrendű kvantilisének különbsége

-15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

Átlagos abszolút különbség (G) A szóródást az ismérvértékek egymás közötti különbségein keresztül méri, abszolút ingadozásmutató A minden lehetséges módon párba állított ismérvértékek különbségeinek abszolút értékéből számított számtani átlag. Kényelmetlen a számítása Alkalmazási területe: koncentráció elemzés

Példa Véletlenszerűen kiválasztunk 5 hallgatót, és kiszámítjuk a Gazdaságstatisztika tárgy 3 zh-ján elért eredményük átlagos abszolút különbségét. Az elért pontok: 45, 52, 76, 87, 92   45 52 76 87 92 7 31 42 47 24 35 40 11 16 5 Az 5 hallgató zh-n elért pontja átlagosan 25,8 ponttal tér el egymástól

Átlagos abszolút eltérés (Δ) A szóródást az értékeknek egy kitüntetett értéktől való eltéréseire támaszkodva jellemzi abszolút ingadozásmutató Az egyes ismérvértékek és a számtani átlag különbségeinek abszolút értékeiből számított számtani átlag

Az érdemjegyek átlagosan 0,81-gyel térnek el az átlagtól. Példa – diszkrét eset Az érdemjegyek átlagosan 0,81-gyel térnek el az átlagtól.

Példa – folytonos eset Az egyes hozamadatok átlagosan 5,3776%-kal térnek el a számtani átlagtól -15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

Példa – folytonos eset No. osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   összesen Az egyes hozamadatok átlagosan 6,213%-kal térnek el a számtani átlagtól

(Korrigált) tapasztalati szórás a szóródást az alapadatoknak egy kitüntetett értéktől (számtani átlagtól) való eltérésein keresztül méri, abszolút ingadozásmutató A szórás az egyes Xi ismérvértékek átlagtól vett di eltéréseinek négyzetes átlaga: azt mutatja, hogy az egyes értékek átlagosan mennyire térnek el a számtani átlagtól. Olyan átlagos hiba, amit akkor követünk el, ha minden alapadatot a számtani átlaggal helyettesítünk. A számtani átlag tulajdonsága szerint ez a hiba minimális.

Az érdemjegyek átlagosan 1-gyel térnek el az átlagos értéktől. Példa – diszkrét eset Az érdemjegyek átlagosan 1-gyel térnek el az átlagos értéktől.

Példa – folytonos eset -15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

Példa – folytonos eset No. osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   összesen

Relatív szórás relatív ingadozásmutató az ismérvértékek átlagtól vett átlagos eltérése százalékos formában kifejezve a szórás és a számtani átlag hányadosa, csak pozitív értékű alapadatok esetében számítható: minél kisebb a relatív szórás, a számtani átlag annál jobban jellemzi az alapadatokat Alkalmazása: különböző sokaságok vagy ismérvek szóródásának összehasonlítására használják

Köszönöm a figyelmet! Árva Gábor