Kauzális modellek Randall Munroe.

Slides:



Advertisements
Hasonló előadás
Szimmetriák szerepe a szilárdtestfizikában
Advertisements

A TUDOMÁNYOS KUTATÁS MÓDSZERTANA
2.1Jelátalakítás - kódolás
Az úttervezési előírások változásai
Fizika II..
Számítógépes Hálózatok
Profitmaximalizálás  = TR – TC
A járműfenntartás valószínűségi alapjai
Szenzorok Bevezetés és alapfogalmak
Végeselemes modellezés matematikai alapjai
A magas baleseti kockázatú útszakaszok rangsorolása
Szerkezetek Dinamikája
MÉZHAMISÍTÁS.
Hőtan BMegeenatmh 5. Többfázisú rendszerek
BMEGEENATMH Hőátadás.
AUTOMATIKAI ÉPÍTŐELEMEK Széchenyi István Egyetem
Skandináv dizájn Hisnyay – Heinzelmann Luca FG58PY.
VÁLLALATI Pénzügyek 2 – MM
Hőtan BMEGEENATMH 4. Gázkörfolyamatok.
Szerkezetek Dinamikája
Összeállította: Polák József
A TUDOMÁNYOS KUTATÁS MÓDSZERTANA
Csáfordi, Zsolt – Kiss, Károly Miklós – Lengyel, Balázs
Tisztelt Hallgatók! Az alábbi példamegoldások segítségével felkészülhetnek a 15 pontos zárthelyi dolgozatra, ahol azt kell majd bizonyítaniuk, hogy a vállalati.
J. Caesar hatalomra jutása atl. 16d
Anyagforgalom a vizekben
Kováts András MTA TK KI Menedék Egyesület
Az eljárás megindítása; eljárási döntések az eljárás megindítása után
Melanóma Hakkel Tamás PPKE-ITK
Az új közbeszerzési szabályozás – jó és rossz gyakorlatok
Képzőművészet Zene Tánc
Penicillin származékok szabadgyökös reakciói
Boros Sándor, Batta Gyula
Bevezetés az alvás-és álomkutatásba
Kalandozások az álomkutatás területén
TANKERÜLETI (JÁRÁSI) SZAKÉRTŐI BIZOTTSÁG
Nemzetközi tapasztalatok kihűléssel kapcsolatban
Gajdácsi József Főigazgató-helyettes
Követelmények Szorgalmi időszakban:
Brachmann Krisztina Országos Epidemiológiai Központ
A nyelvtechnológia eszközei és nyersanyagai 2016/ félév
Járványügyi teendők meningococcus betegség esetén
Kezdetek októberében a könyvtár TÁMOP (3.2.4/08/01) pályázatának keretében vette kezdetét a Mentori szolgálat.
Poszt transzlációs módosulások
Vitaminok.
A sebész fő ellensége: a vérzés
Pharmanex ® Bone Formula
Data Mining Machine Learning a gyakorlatban - eszközök és technikák
VÁLLALATI PÉNZÜGYEK I. Dr. Tóth Tamás.
Pontos, precíz és hatékony elméleti módszerek az anion-pi kölcsönhatási energiák számítására modell szerkezetekben előadó: Mezei Pál Dániel Ph. D. hallgató.
Bevezetés a pszichológiába
MOSZKVA ZENE: KALINKA –HELMUT LOTTI AUTOMATA.
Bőrimpedancia A bőr fajlagos ellenállásának és kapacitásának meghatározása Impedancia (Z): Ohmos ellenállást, frekvenciafüggő elemeket (kondenzátort, tekercset)
Poimenika SRTA –
Végeselemes modellezés matematikai alapjai
Összefoglalás.
Az energiarendszerek jellemzői, hatékonysága
Varga Júlia MTA KRTK KTI Szirák,
Konzerváló fogászat Dr. Szabó Balázs
Outlier detektálás nagyméretű adathalmazokon
További MapReduce szemelvények: gráfproblémák
Ráhagyások, Mérés, adatgyűjtés
Járműcsarnokok technológiai méretezése
Grafikai művészet Victor Vasarely Maurits Cornelis Escher.
VÁLLALATI PÉNZÜGYEK I. Dr. Tóth Tamás.
RÉSZEKRE BONTOTT SOKASÁG VIZSGÁLATA
Az anyagok fejlesztésével a méretek csökkennek [Feynman, 1959].
Bevezetés a színek elméletébe és a fényképezéssel kapcsolatos fogalmak
Minőségmenedzsment alapjai
Konferencia A BIZTONSÁGOS ISKOLÁÉRT Jó kezdeményezések
Előadás másolata:

Kauzális modellek Randall Munroe

A kauzalitás reprezentációi Determinisztikus differenciál- és differenciaegyenletek Sztochasztikus Feltételes valószínűség <–> hipergráf Irányított gráf: több ok, egy okozat <–> Bayes- háló Cirkuláris kauzalitás vagy körmentes gráf (DAG) Dinamikus statisztikai modellek Determinisztikus dinamika + zajmodell Sztochasztikus differenciálegyenletek (Itō és Sztratonovics) Eloszlások időbeli fejlődése (Chapman- Kolmogorov egyenlet: Fokker-Planck, Scrödinger, Ornstein-Uhlenbeck, Brown- mozgás) Fenomenológiai vagy mechanisztikus megközelítés Ontológiai kapcsolatok – rejtett változós modellek Episztemológiai kapcsolatok - korreláció, irányított entrópia, Granger-kauzalitás, regesszió, …

Grafikus modellek Minden kauzális modellre megadható Általában fix modell paramétereit becsüljük, vagy fix struktúrákat hasonlítunk össze Általánosan meghatározni a kauzális kapcsolatokat nagyon nehéz – Judea Pearl Zoubin Ghahramani Markov random field Faktor gráf Bayes-háló Feltételes függetlenségi Együttes eloszlás Összefüggőségi viszonyok faktorizációja viszonyok

Kauzális és energiaalapú modellek Nem felügyelt tanulással Yann LeCun Hosszadalmasabb mintagenerálás Az energiafelületen való mozgással előállítható a poszterior Könnyű mintagenerálás A rejtett változók eloszlásának megtalálása (poszterior) nehezebb

Kauzális modellek típusai Determinisztikus – sztochasztikus Diszkrét – folytonos (melyik változóról beszélünk) Rendezetlen adathalmaz – (időben) rendezett idősor Hierarchikus – hiperparaméterek adják meg a paraméterek, mint valószínűséfi változók eloszlásait Változók közti leképezés: lineáris, bonyolultabb Véletlen formája: Gauss, egyenletes, multinomiális, egyéb, nemparametrikus

Eloszlások statisztikai modellekben posterior likelihood prior Predictive distribution: 𝑝 θ∣𝑦,𝑀 = 𝑝 𝑦∣θ,𝑀 𝑝 θ∣𝑀 𝑝 𝑦∣𝑀 𝑝 𝑦′∣θ,𝑦,𝑀 evidence (marginal likelihood) Véletlen formája: Gauss, egyenletes, multinomiális, egyéb, nemparametrikus Konjugált priorok A Bayes-tétel iteratív alkalmazásakor olyan prior eloszlást akarunk, ami a likelihooddal szorozva azonos alakú poszteriort ad Az exponenciális eloszláscsaládoknak van konjugált priorja Gauss – Gauss-Wishart (gamma, inverz gamma) multinomiális – Dirichlet (binomiális-béta)

Iteratív becslés Lineáris modell illesztése Gauss zajjal és priorral Harmadfokú polinom illesztése Gauss zajjal – prediktív eloszlás Cristopher M. Bishop

Poszterior eloszlásbecslés Analitikusan sokszor nem megoldható Numerikus módszerek Két részre osztjuk a rejtett fázist – példa: szekrénycipelés Lokális optimumot talál Pontbecslés Teljes eloszlások Sampling – egzakt, könnyű megadni, de lassú Közelítő inferencia, VB – nem egzakt, nehéz megadni, de gyors

Expectation Maximization Pontbecslés – determinisztikus paraméterek ML vagy MAP Felveszünk egy q(x) segédeloszlást a rejtett változókon E: Maximalizáljuk L-t q(x) szerint a régi paraméterekkel M: Maximalizáljuk L-t fix q(x) mellett a paraméterek szerint A teljes-adat-likelihood könnyebben megadható Ha nincs analitikus maximuma az E és M egyenleteknek, ott is numerikus közelítés kell: Gauss-Newton, Fischer scoring scheme, ... 𝑝 𝑦∣θ =𝐿 𝑞,θ +𝐾𝐿 𝑞∥𝑝 𝐿 𝑞,θ = 𝑥 𝑞 𝑥 ln 𝑝 𝑥,𝑦∣θ 𝑞 𝑥 𝐾𝐿 𝑞∥𝑝 =− 𝑥 𝑞 𝑥 ln 𝑝 𝑥∣𝑦,θ 𝑞 𝑥 𝑞 𝑥 ← 𝑎𝑟𝑔𝑚𝑎𝑥 𝑞 𝐿 𝑞,θ =𝑝 𝑥∣𝑦, θ 𝑜𝑙𝑑 θ← 𝑎𝑟𝑔𝑚𝑎𝑥 θ 𝐿 𝑞,θ

A legegyszerűbb EM: k-means Kétfajta rejtett változó: klaszterközéppontok, hovatartozások Négyzetes távolság minimuma – max Gaussian log-likelihood egységnyi szórással

Keverékmodellek Eloszlások lineáris kombinációja: mixture of Gaussians K eloszláskomponens, N adatpont x - rejtett változó: melyikből generáltuk a pontot, multinomiális eloszlású k elemű vektor, egy eleme 1, a többi 0 Multinomiális paraméterei fölött Dirichlet-priort használunk Az egyik komponensből származó Gauss- eloszlású megfigyelt változó paraméterei fölött Gauss-Wishart priort Λ= Σ −1 𝑝 𝑦 = 𝑘=1 𝐾 π 𝑘 𝑁 𝑦∣ μ 𝑘 Σ 𝑘 𝑝 μ,Λ = 𝑘=1 𝐾 𝑁 μ 𝑘 ∣ 𝑚 0, β 0 Λ 𝑘 −1 𝑊 Λ 𝑘 ∣ 𝑊 0, ν 0 𝑝 𝑥 = 𝑘=1 𝐾 π 𝑘 𝑥 𝑘 𝑝 π =𝐷𝑖𝑟 π∣ α 0

EM Gaussian mixture modellre E: frissítsük a rejtett változó feletti poszteriort a paraméterek aktuális értékével M: frissítsük a paraméterek értékét γ 𝑥 𝑘 =𝑝 𝑥 𝑘 =1∣𝑦 = π 𝑘 𝑁 𝑦∣ μ 𝑘 Σ 𝑘 𝑗=1 𝐾 π 𝑗 𝑁 𝑦∣ μ 𝑗 Σ 𝑗 𝑁 𝑘 = 𝑛=1 𝑁 γ 𝑥 𝑘 μ 𝑘 ← 1 𝑁 𝑘 𝑛=1 𝑁 γ 𝑥 𝑘 𝑦 Σ 𝑘 ← 1 𝑁 𝑘 𝑛=1 𝑁 γ 𝑥 𝑘 𝑦− μ 𝑘 𝑦− μ 𝑘 𝑇 π 𝑘 ← 𝑁 𝑘 𝑁

EM speciális esetei Hidden markov models Lineáris, Gauss zaj, diszkrét változók, diszkrét idő Viterbi-algoritmus: rejtett állapotváltozók forward-backward (Baum- Welch): átmenetvalószínűségi paraméterek Kálmán-szűrő: folytonos idő Stochastic context-free grammar: Inside-outside algoritmus

Poszterior közelítő becslése Variational Bayes Poszterior közelítő becslése A paramétereket is valószínűségi változók, együtt kezeljük az állapotváltozókkal Faktorizált eloszlást használunk közelítésre A faktorok definiálhatók egyenként a rejtett változók felett, vagy csoportosítva L-t egyenként maximalizáljuk a faktoreloszlások szerint, a többit mindig fixen tartva Variációkalkulus segítségével adhatjuk meg egy funkcionál maximumát 𝑧← 𝑥,θ 𝑝 𝑦 =𝐿 𝑞 +𝐾𝐿 𝑞∥𝑝 𝐿 𝑞 = 𝑧 𝑞 𝑧 ln 𝑝 𝑦,𝑧 𝑞 𝑧 𝐾𝐿 𝑞∥𝑝 =− 𝑧 𝑞 𝑧 ln 𝑝 𝑧∣𝑦 𝑞 𝑧 𝑞 𝑧 = 𝑖=1 𝑀 𝑞 𝑖 𝑧 𝑖 ln 𝑞 𝑗 𝑛𝑒𝑤 𝑧 = 𝐸 𝑞 𝑖≠𝑗 ln𝑝 𝑦,𝑧 +𝑐

VB for mixture of Gaussians Faktorok: állapotváltozók és paraméterek eloszlása A variációs szabállyal megadjuk a frissítési egyenleteket a q-kra Felváltva maxima- lizálunk, mit az EM-nél 𝑞 𝑧 =𝑞 𝑥 𝑞 π,ν,Λ 𝑞 𝑥 ∝ 𝑛=1 𝑁 𝑘=1 𝐾 𝐸 π 𝑘 + 1 2 𝐸 ln∣ Λ 𝑘 ∣ − 𝐷 2 ln 2π − 1 2 𝐸 μ 𝑘 , Λ 𝑘 𝑦 𝑛 − μ 𝑘 𝑇 Λ 𝑘 𝑦 𝑛 − μ 𝑘

Message passing Grafikus modelleken végezhető inferencia a szomszédos csúcsok közötti üzenetátadással DAG-on egzakt, ciklikus gráfon közelítő Hasonló, mint amikor a Boltzmann-gépet frissítjük, hogy egyensúlyba kerüljön Belief propagation: marginálisok EM: faktor gráfokon Variational message passing Winn & Bishop

A neurális kód Valószínűségi változók reprezentációja Parametrikus Mintaalapú Predikciós hibák A neuronok által megvalósított számítások Diszkrét spikeok és folytonos membránpotenciál Lehetséges kódolóváltozók: spike timing, rate, phase, ... Mi az a leképezés, amit a szinaptikus tranzmisszió megvalósít sejt- vagy populációs szinten

Az agykéreg szerkezete Rétegek Kolumnák: mikro, makro Szentágothai: modul

Canonical microcircuit Karl J. Friston Hierarchikus modell Paraméterek a mély rétegekben, állapotváltozók predikciós hibája a magasabbakban Variational Bayes with message passing

A kérgi számítás alapelve Rengeteg nagyrészt inkompatibilis verzió Bayesiánus valószínűségre építő verziók: Bayesian brain Alex Pouget, Peter Latham, Peter Dayan, Máté Lengyel, ... Iteratív becslésre épülő koncepciók Sophie Denève: Belief propagation Wolfgang Maas, Rajesh Rao: EM Karl Friston: VB …