Folyadék áramlási nyomásveszteségének meghatározása Feladatok Jelleggörbe szerkesztés A hőellátó rendszer nyomásviszonyai (Hidraulikai beszabályozás) Hőszállítás.

Slides:



Advertisements
Hasonló előadás
Öntözőrendszerek tervezése: laterálisok László Ormos
Advertisements

Környezeti és Műszaki Áramlástan II. (Transzportfolyamatok II.)
Folyadékok egyensúlyát leíró egyenletek
Dr. Szőke Béla jegyzete alapján Készítette: Meskó Diána
Hőszállítás Épületenergetika B.Sc. 6. félév március 16.
Volumetrikus szivattyúk
Áramlástani szivattyúk 2.
Az impulzus tétel Hő- és Áramlástan I. Dr. Író Béla SZE-MTK
A Szűrés Fogalma Elméleti összefüggései Gyakorlati alkalmazásai
Egymáson gördülő kemény golyók
Az igénybevételek jellemzése (1)
Elektrotechnika 1. előadás Dr. Hodossy László 2006.
Földstatikai feladatok megoldási módszerei
Vízmozgások és hatásaik a talajban
Ventilátorok Író Béla Hő- és Áramlástan Gépei (AG_011_1)
Veszteséges áramlás (Hidraulika)
Az Euler-egyenlet és a Bernoulli-egyenlet
Veszteséges áramlás (Navier-Stokes egyenlet)
A fluidumok sebessége és árama Készítette: Varga István VEGYÉSZETI-ÉLELMISZERIPARI KÖZÉPISKOLA CSÓKA
A szabályozószelep statikus tulajdonsága Készítette: Varga István VEGYÉSZETI-ÉLELMISZERIPARI KÖZÉPISKOLA CSÓKA
Sebességeloszlás sima csőben, és a határréteg fogalma
Folyadékok mozgásjelenségei általában
piezometrikus nyomásvonal
Porleválasztó rendszerek kialakítása és üzemeltetése
Műszaki és környezeti áramlástan I.
Műszaki és környezeti áramlástan I.
Közműellátás gyakorlathoz elméleti összefoglaló
Feszültség, ellenállás, áramkörök
EJF Építőmérnöki Szak (BSC)
EJF VICSA szakmérnöki Vízellátás
EJF Építőmérnöki Szak (BSC)
Hőigények meghatározása (feladatok) Hőközpontok kialakítása
Hőszállítás Épületenergetika B.Sc. 6. félév március 30.
Hőszállítás Épületenergetika B.Sc. 6. félév március 23.
Hőigények aránya Csőben áramló közeg nyomásveszteségének számítása
Épületgépészet B.Sc., Épületenergetika B.Sc.
Épületgépészet B.Sc., Épületenergetika B.Sc.
Hőigények meghatározása Hőközpontok kialakítása
Összefoglalás a 2. zárthelyihez Hőszállítás Épületgépészet B.Sc. 5. félév; Épületenergetika B.Sc. 5. (6.) félév november 16.
Összefoglalás a 2. zárthelyihez Hőszállítás Épületgépészet B.Sc., Épületenergetika B.Sc. 5. félév november 11.
Épületgépészet B.Sc. 5. félév; Épületenergetika B.Sc. 5. (6.) félév
Csőben áramló közeg nyomásveszteségének számítása
Hőszállítás Épületgépészet B.Sc. 5. félév; Épületenergetika B.Sc. 5. (6.) félév október 8. ISMÉTLÉS.
Épületgépészet B.Sc. 5. félév; Épületenergetika B.Sc. 5. (6.) félév
Hőtan.
Ideális folyadékok időálló áramlása
Áramlástan Áramlási formák Áramlás csővezetékben Áramlás testek körül
Hídtartókra ható szélerők meghatározása numerikus szimulációval Budapesti Műszaki és Gazdaságtudományi Egyetem Áramlástan Tanszék február.
LÉGCSATORNA HÁLÓZATOK MÉRETEZÉSE
Ohm-törvény Az Ohm-törvény egy fizikai törvényszerűség, amely egy elektromos vezetékszakaszon átfolyó áram erőssége és a rajta eső feszültség összefüggését.
Sándor Balázs BME, Vízépítési és Vízgazdálkodási Tanszék
Hő- és Áramlástan Gépei
Az áramló folyadék energiakomponensei
Gyakoroló feladatok Bernoulli egyenlet valós folyadékokra I.
Földstatikai feladatok megoldási módszerei
Fűtéstechnika Épületgépészet B.Sc., Épületenergetika B.Sc. 6. félév május 6. HIDRAULIKAI MÉRETEZÉS.
Folyadék áramlási nyomásveszteségének meghatározása Feladatok Jelleggörbe szerkesztés A hőellátó rendszer nyomásviszonyai Hőszállítás Épületgépészet B.Sc.,
M.Sc. Épületgépészeti képzés III. félév Vízellátás, csatornázás, gázellátás február 22., 29. Használati melegvíz termelők kapcsolásai.
A változó tömegáramú keringetés gazdasági előnyei Távhővezeték hővesztesége Kritikus hőszigetelési vastagság Feladatok A hőközponti HMV termelés kialakítása.
Mini-flap projekt Borda-Carnot átmenet 2  BC-átmenet: áramlás irányába bekövetkező hirtelen keresztmetszet- ugrás, cél a közeg lassítása,
Áramlás szabad felszínű csatornában Hő- és Áramlástan I. Dr. Író Béla SZE-MTK Mechatronika és Gépszerkezettan Tanszék.
Az impulzus tétel alkalmazása (megoldási módszer)
Áramlástani alapok évfolyam
Áramlástani alapok évfolyam
Az impulzus tétel Hő- és Áramlástan I. Dr. Író Béla SZE-MTK
Az Euler-egyenlet és a Bernoulli-egyenlet
Környezetvédelmi számítások környezetvédőknek
Áramlás szilárd szemcsés rétegen
Hőtan.
Előadás másolata:

Folyadék áramlási nyomásveszteségének meghatározása Feladatok Jelleggörbe szerkesztés A hőellátó rendszer nyomásviszonyai (Hidraulikai beszabályozás) Hőszállítás Épületgépészet B.Sc., Épületenergetika B.Sc. 5. félév október 10.

Folyadék áramlási nyomásveszteségének meghatározása Euler-egyenlet: a folyadékrészecske mozgásegyenlete súrlódásmentes esetben

Bernoulli-egyenlet: az Euler-egyenlet vonalmenti integrálja az áramlási tér két pontja között.

Stacioner, súrlódásmentes, adiabatikus áramlás Bernoulli-egyenlet stacionárius áramlás esetén, potenciálos erőtérben, áramvonalon integrálva:

Az egységnyi tömeg áramoltatásához szükséges szivattyúteljesítmény állandó keresztmetszetű esetben anyagmegmaradás törvénye → kontinuitási egyenlet ha ρ = állandó

Súrlódásos, hőszigetelt (adiabatikus) áramlás Áramlási veszteség, hidraulikai ellenállás

Néhány gyakran előforduló áramlási szelvény hidraulikailag egyenértékű átmérőjének meghatározása

Sebességeloszlás a csőkeresztmetszetben lamináris turbulens (n=1/7) lamináris: n=1 turbulens:

az összefüggés neve az áramlás jellege érvényességi tartomány egyenlet Hagen- Poiseuille laminárisRe<Re kr Re kr = (Re kr =f(k/d)) Blasiusturbulens, hidraulikailag sima cső Re kr < Re < 10 5 Prandtl- Nikuradse turbulens, hidraulikailag sima cső Re kr < Re < 3,4*10 6 Kármánturbulens, érdes cső Re határ < Re Colebrook- White érdes cső turbulens átmeneti tartomány Re kr < Re Rouseturbulens határgörbe A csősúrlódási tényező számítására szolgáló összefüggések

Anyag és technológiaA cső állapotak, mm Húzott cső üvegből, vörös vagy sárgarézből, bronzból, alumíniumból, vagy hasonló könnyűfémből, műanyagból stb. új, hidraulikailag sima0 (sima)…0,0015 Húzott acélcső új0,01…0,050,04 (0,02…0,10) hosszabb használat után tisztítva -0,15…0,20 gyengén rozsdás és/vagy csekély lerakódás -0,40 erős lerakódás -…3,00 Hegesztett acélcső új0,6…0,10 új, bitumenezett-0,05 használt és tisztított-0,15…0,20 egyenletes, gyenge rozsda 0,15…0,20…0,40 csekély lerakódás 0,15…0,201,00…1,50 erős lerakódás …3,002,00…4,00 Horganyzott acélcsőlerakódás nélkül0,12…0,15 0,15 Öntöttvas csőúj0,250,26…1,00 új, bitumenezett0…0,120,10…0,15 rozsdás1,501,00…1,50 erős lerakódás3,001,50…4,00 Azbesztcement cső0…0,150,05…0,10

A jelleggörbe szerkesztés lépései A szerkesztés kétféle szemléletben folyhat: –csak az első síknegyedben (klasszikus szerkesztési mód) –négy síknegyedben az egyes elemek jelleggörbéjének megállapítása a hálózat párhuzamos és soros elemekre bontása részeredők szerkesztése, rekurzív módon a teljes rendszer eredőjének megszerkesztése a rendszer térfogatárama: ahol a rendszer eredő nyomáskülönbsége =0 (négy síknegyedben való szerkesztésnél) rész-térfogatáramok és nyomáskülönbségek meghatározása Nem minden hálózatnak szerkeszthető meg a jelleggörbéje! (Pédául: „Tichelmann-kapcsolás”)

soros kapcsolás párhuzamos kapcsolás

Nyomásdiagram kétvonalas nyomásdiagram (vezetékpár nyomásviszonyai) a vízszintes tengelyen a nyomvonalhossz, a függőleges tengelyen a nyomás a vezetékben a közeg a csökkenő nyomás irányába áramlik ott van töréspont a nyomásvonalban, ahol a fajlagos nyomásveszteség (S’; Δp/l; dp/dl) megváltozik: –betáplálás/elvétel –átmérő megváltozása –(csőanyag változása) „lépcső” a nyomásdiagramban: koncentrált nyomáscsökkenés/ /nyomásnövekedés: –jelentős alaki ellenállás, amelynek hossza elhanyagolható –szivattyú a vezetékpárra csatlakozó fogyasztók rendelkezésére álló nyomáskülönbség a nyomásvonalak metszékbeli különbségével egyenlő

Beszabályozás Az egyes fogyasztókra jutó nyomáskülönbség kiegyenlítése a nyomáskülönbség-többlet fojtásával. Statikus beszabályozás Állandó fojtás, aminek értékét a beszabályozási folyamat során állítjuk be. Dinamikus beszabályozás Változó mértékű fojtással állandó nyomáskülönbség fenntartása a fogyasztó számára.

Köszönöm a figyelmet!