Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Klímaváltozások: Adatok, nagyságrendek, modellek Rácz Zoltán Institute for Theoretical Physics Eötvös University Homepage:

Hasonló előadás


Az előadások a következő témára: "Klímaváltozások: Adatok, nagyságrendek, modellek Rácz Zoltán Institute for Theoretical Physics Eötvös University Homepage:"— Előadás másolata:

1 Klímaváltozások: Adatok, nagyságrendek, modellek Rácz Zoltán Institute for Theoretical Physics Eötvös University Homepage: general.elte.hu/~racz Epilógus: Epilógus: A véleményváltás valószínűsége, avagy léteznek-e boszorkányok? Problémakör: Problémakör: Mi a klíma és mit jelent a változása? Mi a szokatlan? Jégkorszakok 100 ezer éves periódusának eredete. A tudományos és társadalmi problémák keveredése. Modellek: Modellek: Térbeli struktúrák jelentősége Lehetséges-e hirtelen változás? Skálák- és effektusok keveredése Üvegház jelenség Kérdések: Kérdések: Mit ismerünk a múltból (adatsorok)? Releváns idő- és távolságskálák Mi hajtja a klímát meghatározó folyamatokat? Energia- és energiaáram-skálák T 2 T 1 T 2 > liquid T 2 T 1 T 2 > atmosphere T 0 T 1 < ocean

2 Boszorkányok és a kis jégkorszak ~ elégetett boszorkányok száma ~ hőmérséklet eltérése az átlagtól s -s-s átlag év E. Oster, J. Econ. Perspectives (2004). W. Behringer: Witches and Witch-Hunt, A Global History (Cambridge, 2004). L. Reynmann (1514) Von warer erkantnus des Wetters (Igaz ismeretek az id ő járásról) Pápai bulla (1484): Boszorkányok képesek id ő járásváltozást okozni. Következtetések: Boszorkányokról Klímakontrollról Központi beavatkozásról Racionalitásról Statisztika problémáiról

3 Kontinensvándorlások és klímaváltozások

4 14 millió évvel ezelőtt

5 Last 65 million years ice water natural:

6 Last 5 million years M.E. Raymo and K. Nisancioglu, Paleoceonography, 20, PA1003 (2003) ?

7 Last 725 thousand years Accuracy of data: pressure shear roughness

8 The last 430 thousand years Slow cooling Fast increase (starting from low T-s!) ice water

9 DO (Dansgaard-Oeschger) oszcillációk Az utolsó 123 ezer év: a jégkorszak finomszerkezete Fiatal driász

10 Last years: Differences between north and south

11 Last years: Fluctuations of temperature

12 Az utolsó 40 év

13 Features we would like to understand t > -800 ky: strong ~100 ky period weaker ~41 ky period Directionality Saw-tooth: Slow cooling, fast warming t < -800 ky ~100 ky period disappears ~41 ky period dominating North and south are ~synchronized Fluctuation spectrum is continuous S(ω) ~ ω -1.8 ~ ω -2.2

14 incoming energy flux relaxation time of the perturbation Atmosphere Ocean Tropo- sphere Thermal mixing Weather fronts Ice fields Ice field height albedo Energies and energy fluxes: Characteristic times energy perturbation Gulf stream eddies

15 Glacial periods and orbital eccentricity Problems: (1) Two orders of magnitude missing (2) 400 ky period M. Milankovich (1930)

16 Spectrum of orbital eccentricity Power spectrum: Problems: 400 ky period missing 100 ky not quite well placed extra periods

17 Periods of Earth: (Milankovich 1930) Excentricity (100 ky) small effect – 0.1% Angle of inclination (41 ky) Precession of axis of rotation: (19, 23 ky) Changes distribution of insolation. Insolation at North Pole: max min 90 0 Affects intensity of seasons. G. Bacsák

18 Insolation intensity at the edges of the icefields How do we get a 100 ky period from J E ?

19 Insolations and insolation differences

20 Threshold models J. Imbrie and J.Z. Imbrie, Science. 207, 943 (1980) D. Paillard, Nature 391, 378 (1998) δO 18 -V(t) Complexity of models: Number of parameters in data + model

21 W. H. Berger, Int. J. Earth Sci. 88, 305 (1999) A threshold model in more detail - ice volume Ice fields grow: Ice fields unstable if (1)It is too large (gravitation) (2)Insolation is large and growing ~30 ky Fitting:

22 W. H. Berger, Int. J. Earth Sci. 88, 305 (1999) Problems with the treshold model Power spectrum: Problems: 400 ky period missing extra frequencies

23 Improving the threshold model W. H. Berger, Int. J. Earth Sci. 88, 305 (1999) Memory effects (Effects of the ice flields?) Average ice volume in the last τ years: Fit: τ

24 Internal drive: Feedbacks and oscillations B. Saltzman and A. Sutera, J. Atm. Sci. 41, 736 (1983) E. Kallen, C. Crafoord, and M. Ghil, J. Atm. Sci. 36, 2292 (1979) H. Gildor and E. Tziperman, J. Geophys. Res. 106, 9117 (2001) How to get oscillations? (+ nonlinear terms) Example: Ice (V) Temperature (T)Precipitation (P) Albedo (α): Mapping on to d=1 Thresholds and/or memory is needed.

25 Sea-ice switch H. Gildor and E. Tziperman, J. Geophys. Res. 106, 9117 (2001) Box model for T land, T sea, V land, V sea model for growth (M) and ablation (S) Warm Cold rate: Ice (V) Temperature (T)Precipitation (P) Albedo (α):Ice (V) Temperature (T)Precipitation (P) Albedo (α):

26 Sea-ice switch: 100 ky period H. Gildor and E. Tziperman, J. Geophys. Res. 106, 9117 (2001) maximal minimal precipitation rate Rate of growth of ice-shields: Rate of decay: ablation rate Period: hard to determine but use ice

27 Stochastic resonance and the 100 ky period R. Benzi et al., Tellus 34, 16 (1982), C. Nicolis, ibid. 34, 1 (1982) T timescale deterministic dynamics internal noise C Temperature (T) time U(T) time Temperature (T) ~3C eccentricity drive U(T)

28 J.D. Pelletier, J. Geophys. Res. 108, 4645 (2003) T Temperature (T) time Are there two stationary states? Prob. distribution of T Does it follow? No. U(T) T T T

29 Stochastic resonance: The mechanism R. Benzi et al., Tellus 34, 16 (1982) C. Nicolis, Tellus 34, 1 (1982) T U(T) timescale deterministic dynamics noise eccentricity T time + Temperature (T)

30 Derivation of the deterministic part G. Matteucci Clim. Dyn. 3, 179 (1989) δTδT U(δT) Energy balance: incoming radiation albedo outgoing infrared radiation, parametrized as TT0T0 large ice-fields no ice α0α0 „heat capacity” of Earth greenhouse may be included here

31 Adding the drive G. Matteucci, Clim. Dyn. 3, 179 (1989) δTδT U(δT) Energy balance: incoming radiation outgoing infrared radiation may be affected by the seasonality Noise: Gaussian white noise: nonlinear effect

32 Adding memory J. D. Pelletier, J. Geophys. Res. 108, 4645 (2003) bistability noise memory (lithospheric effects) solves the problem of directionality Vostok Similar observations: E. Koscielny-Bunde et al., Phys.Rev.Lett. 81, 729 (1998) J. D. Pelletier and D. L. Turcotte, Hydrology, 203, 198 (1997)

33 Adding noise to sea-ice switch model Y. Ashkenazy et al. J.Geophys.Res. 110, C02005 (2005) Dynamics of ice-shields of volume V: Growth slows down when ice volume is large ablation off on Memory of and ! V0V0 memory term needed for directionality noise

34 Föld pályája Por pályája Jupiter Inclination Bolygóközi por és a Föld pályasíkjának billegése R.A. Muller and G.J. MacDonald, Nature 377, 107 (1995) Problémák: éves memória, Mechanizmus?

35 Üvegházhatás: Por, vulkán, aeroszolok, CO 2, … T F =255K JEJE T F =303K JEJE

36 Üvegházhatás: CO 2 Mi hajt mit? Pozitiv visszacsatolás?

37 Üvegházhatás: CO 2, H 2 O, CH 4 … bejöv ő kimen ő sugárzás spektrális felbontása Üvegház gázok absorbciós spektruma 11 km magasan tenger- szinten

38 JONES s CHRISTY July 5, The scientific community would come down on me in no uncertain terms if I said the world had cooled from OK it has but it is only 7 years of data and it isn't statistically significant txt Globális felmelegedés

39 Energy fluxes *10 w Direct reflection Direct change into heat 0.47 Evaporation, precipitation, etc Wind, waves, currents, convection 2*10 Energy storage in water, ice Photosynthesis 2*10 Earth Energy storage by living matter coal, oil, gas decay humans 3*10 1*10 industry Nuclear and thermal energies Energy flow from Earth 2*10 Volcanos, hot springs 2*10 tides 2*

40 Az energiafelhasználás fejlődése Gyüjtöget ő életmód A t ű z megszelidítése Kezdeti mez ő gazdaság Kezdeti iparosodás (~1850) USA (1970) USA (2008) Watt m Szükséges terület 100% napenergiából 100%-os effektivitás 2

41 Energy-future: Where will it come from? Needed area for 100% solar energy 10% effectivity USA (2008) Watt m 2 Tides: No Volcanos, hot springs: No Heat flow from Earth: No Photosynthesis: No Coal, oil, gas Yes Nuclear energy ? Wind ? Solar ? The level would we like to live: US2008. World population: 6.8 ·10 9 Land area of Earth: 4π ·(6·10 6 m) 2 ·0.3= 1.5 ·10 14 m 2 Area needed: 6.8 ·10 9 ·380m 2 =2.5 ·10 12 m 2 Europe: 1.0 ·10 13 m 2

42 Taking the focus away from health aid could be bad for the environment in the long run because improvements in health, including voluntary family planning, lead people to have smaller families, which in turn reduces the strain on the environment. Gates on Copenhagen Agreement in Copenhagen: Channel $100 billion per year to developing countries to combat climate change by Has a $34 billion fundation for fighting malaria etc. … in developing countries. Gates: $100 billion per year is more than ¾ of foreign aid currently given by the rich countries. I am concerned that some of this money will come from reducing other categories of foreign aid, especially health. If just 1% of the $100 billion came from vaccine funding then more children could die from preventable diseases.

43 Do witches exist if there are two large hurricanes in a century? : hurricans are caused by witches (idea) : more than 2 hurricans occurs in a century (phenomena) Outset: we do not know If, then the probability of is big: If, then the probability of is small: Probability of and Probability of if happens h

44 Az utolsó 9 évben nem emelkedett a Föld h ő mérséklete emelkedett a Föld h ő mérséklete International Kiwi IPCC Report Suzy Rácz Legmelegebb évek 150 év óta: 10-ből 8 az utolsó évtizedben 10-ből 8 az utolsó évtizedben International Papaya IPCC Report Nóra Rácz IPCC 2007 interpretációk Fig. SPM-3


Letölteni ppt "Klímaváltozások: Adatok, nagyságrendek, modellek Rácz Zoltán Institute for Theoretical Physics Eötvös University Homepage:"

Hasonló előadás


Google Hirdetések