Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Hálózattervezés 2012. nov. 13.1 WiFi hálózatok tervezése 13. Előadás Takács György Felhasználva az NMHH és Anders Nilsson anyagait.

Hasonló előadás


Az előadások a következő témára: "Hálózattervezés 2012. nov. 13.1 WiFi hálózatok tervezése 13. Előadás Takács György Felhasználva az NMHH és Anders Nilsson anyagait."— Előadás másolata:

1 Hálózattervezés nov WiFi hálózatok tervezése 13. Előadás Takács György Felhasználva az NMHH és Anders Nilsson anyagait

2 Hálózattervezés nov. 13.2

3 3 WPAN (Wireless Personal Access Network, Rádiós személyi hozzáférési hálózat) Személyi eszközök közötti rövidtávú átviteli összeköttetés. Jellegzetes átviteli távolság: 10 m vagy kisebb. Jellegzetes szabvány: IEEE Jellegzetes megoldás: Bluetooth

4 Hálózattervezés nov RLAN (Radio LAN, Rádiós helyi hálózat más néven WLAN) LAN rendszer rádiós megoldása. Jellegzetes átviteli távolság: 150 m vagy kisebb. LAN (Local Area Network, Helyi hálózat) -- Egymás közelébe telepített számítógépek együttes működését biztosító távközlő hálózat. WiFi (Wireless Fidelity) -- Olyan RLAN kereskedelmi neve, ami az IEEE szabványnak felel meg és a 2,4 GHz-es sávban (2400 – 2483,5 MHz) működik.

5 Hálózattervezés nov WAN (Wireless Access Network, Rádiós hozzáférési hálózat) Nagy területű (tipikusan országos) mobilitást biztosító hozzáférési hálózat. Ide tartoznak a mobil rádiótelefon rendszerek, valamint a WiMAX egyik szabvány-hátterének jelenleg folyamatban lévő továbbfejlesztése, az IEEE e szabvány. Jellegzetes lefedés: bolyongási lehetőség következtében országos hatáskörű.

6 Hálózattervezés nov A szabályozás frekvenciasávjai – 2,4 GHz-es sáv 2400 – 2483,5 MHz; – 5,2 GHz-es sáv 5150 – 5350 MHz; – 5,6 GHz-es sáv 5470 – 5725 MHz. Tájékoztató jelleggel a jövőbeli WiMAX típusú szélessávú hozzáférési rendszerek az alábbi frekvenciasávokban: – 3,5 GHz-es sáv 3410 – 3494 / 3510 – 3594 MHz; – 5,8 GHz-es sáv 5725 – 5875 MHz.

7 Hálózattervezés nov. 13.7

8 8 Egyedi engedélyezési kötelezettség alól mentesített rádióalkalmazások: Olyan rádióalkalmazások, amelyek a használt állomásokra, ill. összeköttetésekre vonatkozóan nem igényelnek – frekvenciakijelölési határozatot, – rádióengedélyt, – hatósági regisztrációt. Az egyedi engedélyezési kötelezettség alóli mentesség egyúttal a frekvenciadíj alóli mentességet is jelenti.

9 Hálózattervezés nov Frekvenciahasználat

10 Hálózattervezés nov Szolgáltatási nyilvántartás kötelezettsége: Amennyiben valamely rádióösszeköttetés szolgáltatási célt szolgál, akkor ezen szolgáltatást csak olyan (természetes vagy jogi) személy, ill. jogi személyiséggel nem rendelkező gazdasági társaság végezheti, aki (ami) az NHH-nál az adott szolgáltatás végzésére bejegyzést nyert. Szolgáltatási-bejelentés abban az esetben is kötelező, ha az adott rádióalkalmazás a rádióengedély szempontjából mentes az egyedi engedélyezés kötelezettsége alól. A szolgáltatási bejelentés kötelezettsége független a technikai megoldástól, tehát valamennyi frekvenciasávban vonatkozik a szolgáltatás végzésére.

11 Hálózattervezés nov Berendezés típus nyilvántartásba vételének kötelezettsége (ill. mentessége): A Magyarországon használt szélessávú adatátviteli berendezéseket általában hatósági típusnyilvántartásba kell venni. Egy szűk kategóriája van a berendezéseknek, amelyek mentességet kapnak a hatósági nyilvántartásba vétel alól. A mentesítés feltételeit az Európai Unió (EU) határozta meg. A típus nyilvántartásba vétele alól azok a berendezés típusok mentesek, amelyek az EU által meghatározott u.n. harmonizált frekvenciasávokban működnek és betartják a harmonizált működés feltételeit.

12 Hálózattervezés nov Berendezés használat

13 Hálózattervezés nov Rádiószolgálati/rádióalkalmazási prioritás: A Nemzetközi Rádiószabályzat a rádiószolgálatokat, ill. rádióalkalmazásokat zavartatási és interferencia- védettségi szempontból prioritási kategóriákba sorolja. A rádiós hozzáférési eszközök szabályozása megfelel a Nemzetközi Rádiószabályzat követelményeinek. Rádiós hozzáférési eszközöknél elsődleges és harmadlagos prioritás van (ezekre az eszközökre másodlagos prioritási kategória nem alkalmazható). A Frekvenciasávok Nemzeti Felosztási Táblázatát (FNFT) elrendelő kormányrendelet az alábbi módon definiálja az elsődleges és harmadlagos prioritást.

14 Hálózattervezés nov Az elsődleges rádiószolgálat állomása: –a) nem okozhat káros zavarást az azonos vagy más elsődleges rádiószolgálat(ok) olyan rádióállomásainak, amelyek részére a frekvenciákat korábban már kijelölték; –b) nem tarthat igényt védelemre az azonos vagy más elsődleges rádiószolgálat(ok) olyan rádióállomásai által okozott káros zavarásokkal szemben, amelyek részére a frekvenciákat már korábban kijelölték. – A harmadlagos rádióalkalmazások rádióállomásai: –a) nem okozhat káros zavarást az elsődleges és másodlagos rádiószolgálat rádióállomásainak; –b) nem tarthat igényt védelemre más rádióállomások által okozott káros zavarásokkal szemben.

15 Hálózattervezés nov ,4 GHz-es sávú RLAN használat Frekvenciasáv: 2400 – 2483,5 MHz a) A sáv általános használata és zavarviszonyai A sávot kijelölték ipari, tudományos és orvosi eszközök működtetésére. Az ipari használat jellegzetes példája az a nagyszámú háztartási mikrohullámú sütő, ami a 2,4 GHz-es sávban működik. Az ipari berendezések mikrohullámú zavarkisugárzása a sávhasználat alapvető meghatározója. A 2,4 GHz-es sávot kijelölték továbbá kis hatótávolságú eszközök (távirányítók, riasztók, stb.) működtetésére. Ezek az eszközök tovább növelik a nem ellenőrizhető zavarszintet. Ebben a kisugárzásokkal erősen terhelt frekvenciasávban megengedett a kis hatótávolságú rádiótávközlés is. Tudatában kell azonban lenni annak, hogy a távközlő eszközök működtetése során mindig lehet zavaró interferenciára számítani. A távközlési sávhasználat prioritási foka harmadlagos. Ez azt jelenti, hogy a berendezések nem tarthatnak igényt interferencia-védelemre más eszközök zavarásával szemben. A 2,4 GHz-es távközlés az egyszerűség és könnyű megvalósíthatóság miatt népszerű. Az elterjedt használat és az állomások nagy száma következtében mostanra már a 2,4 GHz-es távközlési összeköttetések kölcsönös egymásra hatása vált a zavarok elsődleges okozójává.

16 Hálózattervezés nov A 2,4 GHz-es sáv távközlési használata A sávhasználatot meghatározó műszaki szabályozás csak a kötelezően betartandó teljesítményszinteket limitálja, az alkalmazott technológiára nem tesz megkötést, tehát technológia-semleges. Az előírások betartása mellett bármilyen rádiótávközlési átviteli alkalmazás megvalósítható. A teljesítmény-korlátozási előírásból adódóan a 2,4 GHz-es távközlési alkalmazások általában 150 m-nél kisebb távolságú átvitelre használhatók előnyösen. Jellegzetes alkalmazások: –– Bluetooth (6. függelék), általában 10 m-nél kisebb távolságra; –– HomeRF, általában 50 m-nél kisebb távolságra; – WiFi, az RLAN egy jellegzetes megoldása, amelyik az IEEE szabvány előírásainak tesz eleget (6. függelék), általában 150 m-nél kisebb távolságra.

17 Hálózattervezés nov A 2,4 GHz-es RLAN-ok előnyösen épületeken belüli hozzáférési rendszerekhez használható. Külső téri RLAN (azaz ORLAN) nincs ugyan tiltva, de műszakilag rendkívül előnytelen ebben a frekvenciasávban (a CEPT deklarációja szerint nem rendeltetésszerű rádióhasználatnak minősíthető). Külső téri átvitelre az 5470 – 5725 MHz sávú ORLAN és WMAN eszközök javasolhatók.

18 Hálózattervezés nov A 2400 – 2483,5 MHz es sávban használt rádióállomások üzemeltetési feltételei: –EIRP maximum 100 mW Spektrális teljesítmény sűrűség FHSS esetén: max. -10 dBW/100 kHz, FHSS-től eltérő rendszer esetén: max. -20 dBW/1 MHz, –Berendezésre meghatározott adatsebesség: min. 250 kbit/s, –Antenna: integrált (nincs antenna-csatlakozó), –vagy –dedikált (a berendezés tartozékát képező külső antenna) A műszaki specifikáció technológia-semleges. Sokfajta különböző szabványnak eleget tevő berendezés kielégíti a műszaki specifikációt, így a Bluetooth, HomeRF és WiFi is.

19 Hálózattervezés nov Az igen elterjedt WiFi a IEEE szabvány előírásait teljesíti. Ebben a szabványban a csatornaosztás definiálva van

20 Hálózattervezés nov

21 Hálózattervezés nov The IEEE Wireless LAN Standard a5GHz, 54 Mbps b2,4 GHz, 11Mbps dMultiple regulatory domains eQuality of Service (QoS) for Voice and Video over W-LAN fInter-Access Point Protocol (IAPP) g2,4 GHz 54 Mbps hDynamic Frequency Selection (DFS) and Transmit Power Control (TPC) iSecurity jJapan 5GHz channels (4,9-5,1 GHz) kMeasurement mMaintenance nHigh speed

22 Hálózattervezés nov

23 Hálózattervezés nov A 2454 – 2483,5 MHz-es sávban az alacsony teljesítményjellemzők mellett harmonizált sávú a működés, de egy bizonyos teljesítményszint fölött nem harmonizált sávú működés definiálandó. A harmonizált és nem-harmonizált működési tartományt elválasztó teljesítmények: EIRP: 10 mW –Teljesítménysűrűség FHSS esetén: -20 dBW/100 kHz FHSS-től eltérő rendszer esetén: -30 dBW/1 MHz A harmonizáltság akkor teljesül, ha mindkét teljesítmény- típusú mennyiség a saját elválasztó értéke alatt marad.

24 Hálózattervezés nov

25 Hálózattervezés nov Media Access Control (MAC) MAC is mandatory for all stations MAC is to assemble data into a frame including local address and error detection field MAC checks the frame address, perform error correction on the frame, disassemble the frame and passes it to the Logical Link Control. The LLC identifies higher layer programs to handle the data and provides and interface to these higher-layer programs while perform flow and error control.

26 Hálózattervezés nov Collision Avoidance Approach The access method differs from the wired Ethernet’s CSMA/CD (Carrier Sensing Media Access and Collision Detection) operation networks use a collision avoidance approach (CSMA/CA) Collisions are avoided rather than detected. This avoidance approach requires each station to listen for transmission from the others. If the channel is idle, this indicates that no one else is currently transmitting and thus the station can now transmit.

27 Hálózattervezés nov Timing and Power All station clocks within a BSS are synchronized by means of the periodic transmission of a time stamped beacon signal received from the APs. Stations employ two power-saving modes: the awake and doze modes. In the awake mode, stations are fully powered and can receive packets at any time. Stations must inform the AP before entering the doze mode. In the doze mode, stations cannot receive packets. Each stations wake up periodically to listen for bacon signals to indicate whether the AP have messages for it.

28 Hálózattervezés nov Beaconing Every 100 ms, all APs send out a 50 byte frame containing an ID for its specific WLAN and a time stamp that is used by all stations that intend to access the network and transmit through a wireless AP. The time stamp is used to synchronize each station’s local clock. The beacon message includes the speeds supported by the AP and the supported modulation technique. The User Stations listen to all the beacons received on every channel from a number of APs in the building and choose the one that has the strongest signal.

29 Hálózattervezés nov Sending Station Receiving Access Point Two Way Access and Transmission Sequence Data Transfer Acknowledgement of Transfer Data Transfer Acknowledgement of Transfer (It is not uncommon for transmitted frames not to be successfully received due to the errors in the over-the-air transmission and competing signals.)

30 Hálózattervezés nov Sending Station Receiving Access Point Four Way Access and Transmission Sequence Request to Send Clear to Send Data Transfer Acknowledgement of Transfer (used to further ensure transmission reliability) Request to send message containing a source address, destination address, duration of the transaction Clear to send message containing the same information or a denial message

31 Hálózattervezés nov Media Access Methods for Control of Access to the Network 1.The distributed access control where each mobile unit makes access decision independently 2.The centralised decision making (polling) approach where a central access protocol controls which stations can access the network by means of a centralized polling mechanism

32 Hálózattervezés nov The distributed Access and Avoidance Method Each station implements the DCF protocol as the means of determining whether there is competing traffic to the AP, which must be avoided. Thus avoidance is the approach devices pursue, which is facilitated with the DCF protocol.

33 Hálózattervezés nov Inter-frame Space IFS Back-off time Distributed Coordination Function (DCF)

34 Hálózattervezés nov The Point (Centralized) Control Function Stations can communicate their need for a special service to a centralized coordination function, identifying themselves as one of the special point control function (PCF) stations. Stations must be necessity cycle between PCF mode and DCF mode to ensure that time- sensitive transmission doesn’t block out all other types of transmissions and other users.

35 Hálózattervezés nov The MAC Frame Format The MAC header contains protocol and control information, the destination and source hardware address, and a cyclic redundancy check for error detection and correction

36 Hálózattervezés nov The MAC Frame Fields The protocol version The frame type (control frame, management frame, or containing user’s data) Data whether destined or leaving the DS Indicator whether or not more frames are follow present frame An indicator that specifies whether the present frame is a retransmission of a previously lost or damaged frame. Duration and connection ID, Sequence control number, Source and destination hardware address.

37 Hálózattervezés nov The Logical Link Control Fields Th LLC is common to all 802 networks. It provides for connectionless unacknowledged, connectionless acknowledged, and connection oriented networks. Contain the destination and source service APs. Provide for the acknowledgement of each frame. There is no flow or error control mechanism beyond the CRC field. Each datagram contained in a MAC frame is acknowledged.

38 Hálózattervezés nov

39 Hálózattervezés nov

40 Hálózattervezés nov

41 Hálózattervezés nov

42 Hálózattervezés nov

43 Hálózattervezés nov

44 Hálózattervezés nov

45 Hálózattervezés nov

46 Hálózattervezés nov

47 Hálózattervezés nov

48 Hálózattervezés nov

49 Hálózattervezés nov

50 Hálózattervezés nov

51 Hálózattervezés nov

52 Hálózattervezés nov

53 Hálózattervezés nov

54 Hálózattervezés nov

55 Hálózattervezés nov

56 Hálózattervezés nov

57 Hálózattervezés nov

58 Hálózattervezés nov

59 Hálózattervezés nov

60 Hálózattervezés nov

61 Hálózattervezés nov

62 Hálózattervezés nov

63 Hálózattervezés nov

64 Hálózattervezés nov

65 Hálózattervezés nov

66 Hálózattervezés nov

67 Hálózattervezés nov

68 Hálózattervezés nov

69 Hálózattervezés nov

70 Hálózattervezés nov

71 Hálózattervezés nov

72 Hálózattervezés nov

73 Hálózattervezés nov

74 Hálózattervezés nov

75 Hálózattervezés nov

76 Hálózattervezés nov

77 Hálózattervezés nov


Letölteni ppt "Hálózattervezés 2012. nov. 13.1 WiFi hálózatok tervezése 13. Előadás Takács György Felhasználva az NMHH és Anders Nilsson anyagait."

Hasonló előadás


Google Hirdetések