Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Gépjármű villamos rendszerének elemei: energiaforrások fogyasztók

Hasonló előadás


Az előadások a következő témára: "Gépjármű villamos rendszerének elemei: energiaforrások fogyasztók"— Előadás másolata:

1 Gépjárművek villamos berendezései, elektronikus vezérlő és szabályzó rendszerei
Gépjármű villamos rendszerének elemei: energiaforrások fogyasztók villamos hálózat Energiaforrások: energiatároló: akkumulátor energiaellátó: generátor

2 A gépjármű energiaháztartása
minden villamos fogyasztó ellátása akkumulátor töltése a generátorteljesítménynek, akkumulátor kapacitásnak és a fogyasztók teljesítményének összhangban kell lennie Túlterhelt generátor - kiegészítő fogyasztók túlzott beépítésével

3 Biztosítékok Vezetékeken fellépő túláram ellen Védi a fogyasztókat
Tűz is lehetséges lenne nélküle!!! Kivitel: lemez, rúd vagy késes 5, 8, 10, 16, 20, 25, 40, 80 A Nincs védve: akksi, generátor, indító motor

4 Jármű villamos energia igénye
A generátor átlagteljesítményének az akkumulátor tárolóképességének és a fogyasztók átlagteljesítmény szükségletének kell összhangban lennie. Az akksi kapacitást az indítómotor jellemzői határozzák meg. Míg a generátorteljesítmény a hálózat energiafogyasztásából számolható ki.

5 Akkumulátorok: Indításnál, vagy álló motornál az akkumulátornak kell az áramellátást biztosítania. Az indító akkumulátor egy energiatároló. Feltöltésénél elektromos energia kémiai energiává alakul, és kisütésnél a kémiai energia elektromos energiává alakul vissza. Gépjárművekben jelenleg a legelterjedtebb a savas ólom akkumulátor.

6 Akkumulátor működése Uc=2 V Pb+2H2SO4+PbO2 PbSO4+2H2O+PbSO4
Kisütéskor elektrolit hígul Töltéskor sűrűbb lesz

7 Akkumulátorok: Primer és szekunder akkumulátorok 1.Savas (ólom akksik)
2.Lúgos (Ni-Cd, Ni-MH) 3.Olvadék és szerves elektrolitú(Li alapú) 4.Szekunder galvánelem (Na-S elemek) Adatai: pl. 12V 84Ah 280A

8 Jármű akkumulátorokkal szembeni igények, követelmények
1. Tölthetőnek kell lenni (szekunder elem) alkalom 2. Nagy terhelhetőségű legyen 1-10 kW, akár 1000 A terhelő áram, kicsi belső ellenállás 0,1-0,001 Ohm 3. szélsőséges környezeti hatásokat elviselje (rázás 30m/s2, 30Hz, tömítettség, hideg és sósköd állóság) 4. nagy fajlagos energiatároló képesség Ws/kg, kis tömeg és térfogat

9 Jármű akkumulátorokkal szembeni igények, követelmények
5. Hosszú élettartam (járművel azonos 3-7 év) 6. Kis karbantartási igény, minimális gondozás 7. Sokáig őrizze az eltárolt energiát- kis önkisülésű legyen (régen napi 1 %, ma akár 200 napig raktározható) 8. mélykisülést elviselje (elektolit felhígul, masszahullás)

10 Jármű akkumulátorokkal szembeni igények, követelmények
9. Ne legyen környezetszennyező, újrafelhasználható legyen !!! 10. Egyszerű üzembe helyezés 11. Versenyképes ár (jármű árának kb. 1 %-a, ólom olcsó, ezért terjedt így el)

11 Akkumulátor felépítése
Savas ólom akkumulátor

12 Töltési módok Gyors (nagy induló áramú) Normál (hosszú idejű)
Formázó (javító, többszöri töltés-kisütés) Csepp (szinten tartó)

13 Gondozásmentes akkumulátorok
Állapotjelző – varázsszem Golyó sűrűsége:  =1,2 kg/dm3

14 40 Ah*30

15 Lithium akkumulátorok
Legkönnyebb fém Jó elektromos töltés tároló Nincs memória effektus Pozitív elektróda: Li-Fe-PO4,Li-Co,Li-MnO Negatív elektróda: grafit Szigetelő: műanyag membrán Tetszőleges formára kialakítható Nagyon drága

16 Lithium akkumulátorok
Töltés-kisütés: BMS (battery managment system - áram, feszültség, hőmérséklet és cella kiegyenlítés felügyelője Névleges feszültség: V Umax: 4.2 V Umin: 2.7 V szer is tölthető (kisebb töltő és kisütő áramnál tartósabb)

17 Lithium akkumulátorok
Li-Ni-Co-O UHP (ultra high power) akksik 0.13 l térfogat 7.5 Ah kapacitás 3.6 V 27 Wh 320 g tömeg 84 Wh/kg 207 Wh/l 2340 W/kg 5730 W/l

18 Energia sűrűség

19 Kisütés görbék

20 Töltés görbék

21 Generátor A generátor feladata, hogy áramot szolgáltasson az akkumulátor töltéséhez és a fogyasztók működéséhez. A generátor háromfázisú váltakozó áramot állít elő, ezért a generátor által szolgáltatott kijövő váltakozó áramot egyen-irányítani kell, mivel a gépjárműbe beépített összes készülék egyenárammal működik. A generátorban található egy feszültségszabályzó is, amely a generátorfeszültséget konstans értéken tartja a motor egész fordulatszám tartományában.

22 Generátor Típusai:korábban egyenáramú (dinamó- Jedlik Ányos 1861), ma váltakozó áramú kiálló pólusú (jellegzetes forgórészről kapta nevét) körmös pólusú (egyes, kettes forgórészén egy gerjesztő tekercs köré) induktor generátor (tekercseletlen forgórész, nem kell csúszógyűrű)

23 Váltakozó áramú generátor
Egyenirányítás diódákkal (nem kell kommutátor- nincs körtűz) Armatúra tekercselés-3 fázisú, a lemezelt állórész hornyaiban Forgórész: egyenáramú tekerccsel gerjesztett, csúszógyűrűkön keresztül

24 Körmöspólusú generátor

25 Körmös pólusú generátor
Csúszógyűrűs kivezetésű Csúszógyűrű nélküli (Gerjesztő tekercs is áll csőtengely kivitelű) Gerjesztő géppel egybeépített generátor (Forgódiódás)

26

27 Feszültség szabályzás
Ui = k n 600<n<6000 Ha n változik, akkor a fluxust is változtatni kell Unévl=14 V Fordulatszámra lineárisan, gerjesztő áramra nem lineárisan változik

28 Feszültség szabályzás elve
e1-e2 zár: Ig nő e1-e2 nyit: Ig csökken e2-e3 zár: nincs gerjesztés

29

30 Magyarázat Növekvő fordulatnál vagy kisebb terhelésnél Ib átlag elég (kisebb fluxus elég), míg kisebb fordulatra vagy növekvő terhelésre nagyobb fluxus kell, azaz nagyobb gerjesztés Ic Legkisebb rezgési frekvencia 30 Hz Átlagos Hz között

31 Indító generátor Nagy elektromosenergia‑igénye
14/42 voltos rendszerre is start/stop funkció gyorsítások támogatása gyors és zajmentes motorindítás a hajtásláncba teljesen integrált indító‑generátor a motorhoz szíjhajtáson keresztül kapcsolt indító‑generátor kidolgozása

32 Indító generátor állandómágneses gerjesztésű belső rotorú szinkrongép
kiegészítő, motoroldali kuplunggal kombinálva, motorfék‑üzemmódban a motorról lekapcsolva a fékezési energia jelentős hányada visszanyerhető. Szakemberek a vázolt elrendezést "minimálhibrid„ néven említik

33 Indító generátor

34 Fogyasztók csoportosítása
Folyamatos üzeműek (gyújtás(28 W), üzemanyag szivattyú(60 W), műszerek(10 W), befecskendezés(80 W)) Szakaszosan üzemelnek (lámpák?(100 W), rádió (20 W), ablaktörlő(60 W), hűtés-fűtés(80 W)) Rövid ideig üzemelnek (indítómotor(1800 W), kürt(40 W), ablakmosó(20 W), szivargyújtó?(100 W), hátramenet lámpa(10 W), belső világítás(10 W))

35 Indító motorok

36 Indító motorok Belsőégésű motor nem képes magától elindulni
Nagy nyomaték kell dugattyú súrlódás, kompresszióból fakadó ellenállás csapágysúrlódás T-től függő viszkozitás miatt

37 Indító motorok Milyen legyen az indító motor?
Melyik egyenáramú gépnek nagy az indítónyomatéka kis fordulatnál? Soros egyenáramú motor Benzinesnél:40-80 ford/perc Dízel: ford/perc Áttétel:i=z1/z2=1:8-1:20

38 Szerkezeti felépítés szempontjai
Indításkor legyen kényszerkapcsolat Villamos kapcsolat fogaskerekek összekapcsolódása után Rövid működési idő (100 A) Indítómotor forgórésze nem lehet merev összeköttetésű belső égésű motorral (szabadon futó) Indítás után mielőbb álljon le (mechanikus vagy villamos fék)

39 Különböző csoportosítások
Teljesítmény szerint: P<1 kw, 1,5 kw<P<5 kw 5 kW<P Feszültség szerint: 12V, 24V Szerkezet szerint: közvetlenül hajtó indítómotor lendítő kerekes

40 Csúszófogaskerekes indítómotor

41 2. lecke: Gépjárművek világító és jelzőberendezései

42 Lámpa típusok fényvetők ködlámpák tolatólámpák helyzetjelző
irányjelző, elakadásjelző féklámpák Műszerfal megvilágítás utas és csomagtér lámpák rendszámvilágítás

43 Fényvetők felépítése Pontszerű fényforrás – mindenfelé sugároz
Széttartó sugarakat forgási paraboloid tükörrel párhuza-mosítják Fókuszpontban legyen az izzó Nagyobb tükör nagyobb fényerő Tükör mélyhúzott acéllemez, lakkozva, alumíniummal gőzölve

44 Fényvetők felépítése Távolsági lámpák: kis gyújtótávolságú, mélyen homorú tükör jó fényhasznosítású irányítottság nem annyira lényeges Ködlámpa: nagy gyújtótávolság irányítottság fontos fényáram kihasználás rosszabb

45 Tompított fényvetők A valóságos fényforrás nem pontszerű, kissé széttartó sugárnyaláb Ezért árnyékolás szükséges az elvakítás megakadályozására Aszimmetrikusnak kell lennie Európában (kevésbé zavarja a szemben jövőt) 40 m-ig biztosítsa a beláthatóságot Fénynyaláb magassága és kapcsolhatósága, mint a fényszórónál

46 Tompított fényvetők Fókuszpont elé helyezve az izzót és lefelé árnyékolva a fénysugarak a vízszintes felezősík fölé nem világít – nem vakítja a szemből jövőket

47 Fényvetők felépítése Tükrözőfelület (paraboloid tükör) Fényforrás
Szóróüveg

48 Fényforrás W-szálas izzó: Kezdetekben csak ilyen izzók
Rossz fényhasznosításúak Nem kell segédberendezés A wolfram szál felizzik az áram hatására Fényt, hőt és gőzt (3000 oC körül) sugároz Fényhasznosítás lumen/watt

49 Fényforrás Halogén izzó Adalék halogén gáz (jód) a búrában
Termikus diffúzió hatására wolfram-jodid képződik, amely 600 oC felett visszaalakul Nem gőzölög így el annyi W – hosszabb élettartam Magas hőmérséklet miatt kvarcüvegből készül Fényhasznosítása lumen/watt

50 Élettartam változás Az izzószál hőmérséklete az áramtól, közvetve a feszültségtől függ 5 %-kal növelve a feszültséget a fényerő 20 %-kal nő élettartam 50 %-kal csökken Fesz. Szabályzás nagyon fontos

51 Közös búrájú izzók tulajdonságai
Fő és mellékizzó egy búrában Távolsági izzószál a fókuszpontban Tompított izzószál előtte, alulról kanállal árnyékolva A foglalat biztosítja, hogy csak adott irányban építhető be Az asszimetriát a 165 o-os takarókanál biztosítja

52 Közös búrájú izzók tulajdonságai

53 Kiegészítő lámpák Ködlámpa (ködfényszóró):
Lejjebb a többi fényvetőnél Szóróüveg bordázata függőlegesen sűrűbb – jobban teríti a fényt – kevesebb verődik vissza a ködről 25 cm-nél nem lehet közelebb az úthoz Tompított fényszóró után kapcsolható Hátsó helyzetjelző ködlámpa: Csak vörös színű lehet Kötelező visszajelezni borostyán sárga színnel

54 Irányjelzők, elakadásjelzők
Irányváltási szándékot jelzünk vele Elöl, oldalt és hátul villogó, sárga fénnyel, zöld visszajelzés (90±30 villogás percenként) Azonos oldalon egyszerre villanjanak Hibás izzót jelezze (nem villog vagy más ütemben)

55 Elektronikus kapcsolású irányjelző
Elektronikus kapcsolásnál: Ütemadó multivibrátor a kapcsoló A relé pedig tranzisztor vagy tirisztor

56 Vészkapcsoló kapcsolás

57 Féklámpa Nappal 50, éjjel 300 m-ről legyen látható
4-szeres fényű, mint a helyzetjelző 10 %-os fékpedál nyomásnál már égjen Világító lámpákat biztosítékkal védjük /külön a jobb és bal oldalt/ Nagyobb fogyasztókat relékkel kapcsoljuk

58 Rendszámtábla és belső világítás
Éjjel 20 m-ről olvasható kell legyen a rendszám Helyzetjelzővel együtt Belső világítás külön kapcsoló

59 Modern lámpák Xenon lámpák (xenon gázzal töltött izzók):
Elektródák között elektromos ívfény 23 kV-os trafó /gyújtáskor/, később V 5-6 másodperc után már 90 %-kal világít Majd mp múlva maximális fényerőt eléri HID /high intensity discharge/ lámpa lumen (Halogén izzó: 1000 lumen) 1.5-2 mp után 90 % fényerő 20 mp után 100 % fényerő

60 Miért jobb a xenon, mint a halogén?
Jobb látási és láthatósági feltételek (3-4 szeres fénytöbblet) Nagyobb oldalirányú terítés Színe jobban közelíti a természetes fényt (nem fárasztja a szemet annyira) 6-7 szeres élettartam Rázásra nem érzékeny Kisebb fogyasztás( W helyett 35 W)

61 Különbségek a xenon és halogén izzók esetében
Foglalatuk azonos, de kell egy trafó a xenonhoz CAN buszos áramfigyelésnél hibát jelezhet a kisebb fogyasztás miatt Speciális izzókábel (+20 W, nincs spórolás) Ki kell kapcsolni az izzó kontrollt vagy átállítani xenonra Single-xenon: egyfajta lámpa csak (pl. tompított) Bi-xenon: két lámpa is xenon (tomp. és reflektor) Tri-xenon: három fajta lámpa is xenon (ködlámpa is)

62 Legújabb fejlesztések
LED (Light Emitting Diode) 1955, Rubin Braunstein felfedezte a gallium-arzenid (GaAs) és egyéb félvezető-ötvözetek infravörös fénykibocsátását. 1961, General Electric forgalmazza 1980-tól nálunk is (csak piros, zöld és sárga színben először) 100 lumen/watt fénykibocsátás mA áramfelvétel Tömbösítés, több led-et kapcsolgatnak elektronikával vezérelve

63 LED-es termékek előnyeik
Gyorsabban kapcsolnak, akár néhány száz ms-mal – féklámpánál lényeges– métereket nyerhetünk vele Áramfelvétele töredéke a hagyományos izzókénak (ha a Szesocar-on az összes lámpa ég, akkor 14 wattot fogyaszt) élettartamuk többszöröse a régi lámpákénak Rázkódással szemben érzéketlen A felvett teljesítmény15 %-át sugározza ki fény formájában (többi hővé alakul, halogén izzóknál ez 5 % volt) Negatívum: túlfeszültségre érzékeny

64 LED-es termékek Először a hátsó lámpákba kerültek beépítésre (fék, helyzetjelző, tolató), majd belső világításként is kezdték használni 2008-tól kerül sorozatgyártásban első lámpába is (tompított és távolsági fényszóró, motorway light – nagy sebességhez, PBL (progressive bending light) – kanyar bevilágításához, DRL (daytime running light – nappali jelző világítás) ),akár XLED (kombinált Xenon és LED-es lámpa) Gyártók: VALEO, TOYODA, HELLA, OSRAM, STANLEY, LUMILEDS (Philips) Alkalmazók: Renault, Saab, Lexus, Toyota, VW, Audi,

65 Hella and Stanley

66 Hella’s earlier LED-headlamp prototype

67 Valeo full LED

68 Hátsó lámpák Toyota RAV4 SUV Opel Antara GTC

69 VW Golf Plus

70 Mercedes-Benz S-Class

71 A gépjármű elektronikus vezérlő és szabályozó rendszerei
Az autókban található ECU-kat funkciójuk alapján általában a következő nagyobb csoportokba sorolják: erőátviteli rendszerek (motorvezérlő, váltóvezérlő) karosszéria rendszerek (fékek, sebességszenzorok) utastér rendszerek (ablakemelő, világítás, központi zár) multimédia rendszerek (autórádió, hangosítás) biztonsági rendszereket (légzsák, ABS, ESP) védelmi rendszereket (ugrókódos ajtónyitó, indításgátló) vezetői információs rendszereket (GPS, tolatóradar)

72 Egy mai autóban 3-5 független kommunikációs hálózat működik
Egy mai autóban 3-5 független kommunikációs hálózat működik. Ezek a kommunikációs hálózatok általában nem egyetlen fizikai kialakítást és protokollt követnek, hanem az adott alkalmazási kör számára legjobb megoldást alkalmazzák. A manapság legelterjedtebb három kommunikációs protokoll a: CAN (Controller Area Network), LIN (Local Interconnect Network) max 19,2 kbit FlexRay 20 Mbit/s MOST (Media Oriented Systems Transport) 150 Mb CAN-bus a Bosch és az Intel közös fejlesztése


Letölteni ppt "Gépjármű villamos rendszerének elemei: energiaforrások fogyasztók"

Hasonló előadás


Google Hirdetések