Előadást letölteni
Az előadás letöltése folymat van. Kérjük, várjon
KiadtaGizella Tóthné Megváltozta több, mint 9 éve
1
Keménység Az anyagok egyik legfontosabb tulajdonsága a keménységük. A fémek és ötvözetek keménységmérése nagyon elterjedt. A keménység alatt a fémnek azt az ellenállását értjük, amelyet a fém egy nála keményebb test behatolásával szemben kifejt.
2
Miért olyan elterjedt a keménységmérés?
a mérés gyors, egyszerű a darabon " roncsolásmentesen " elvégezhető az eredményekből kísérletileg meghatározott összefüggések alapján egyéb anyagjellemzőkre is következtethetünk a technológiai folyamatba beilleszthető
3
A statikus mérések elve
egy szabványos anyagú, alakú és méretű kemény testet (benyomó szerszám) meghatározott ideig ható terheléssel a mérendő anyag felületébe nyomunk, és vagy a terhelő erő és a lenyomat felületének hányadosával, (HB, HV) vagy a benyomódás mélységéből képezett számmal (HR) jellemezzük a keménységet. A terhelést lassan adjuk rá a benyomó szerszámra, ezért a módszereket statikus keménység méréseknek nevezzük.
4
Megjegyzés A különböző, néha eltérő fizikai hatásokon alapuló eljárások mérőszámai csak korlátozott módon, bizonyos megszorítások figyelembevételével hasonlíthatók össze. Alapvetően megállapítható, hogy minden eljárásnak megvan a maga elsődleges és leggyakrabban használt területe.
5
Brinell keménységmérés MSZ EN ISO 6506-1(mérés)-2 (ellenőrzés, kalibrálás)
A mérés során D átmérőjű keményfém golyót F terhelő erővel belenyomunk a darabon legtöbbször köszörüléssel előkészített sík felületbe Ezáltal d átmérőjű, h mélységű gömbsüveg alakú lenyomat képződik.
6
A Brinell keménység értelmezése
Brinell keménységen az F terhelő erő és a lenyomat felületének hányadosát értjük. Jele: HB. A gömbsüveg felülete Dh. Ezzel a keménység számértéke: A keménység mértékegység nélküli szám!
7
Mi kell megválasztani és hogyan?
A golyó A mérésnél használt golyó keményfém (wolfram karbid) (régebben edzett acél) átmérője D 10 5 2,5 2 és 1 mm méretét a mérendő anyag vastagságának, és a mérési körülményeknek ( keménységmérő gép ) megfelelően választjuk meg.
8
Mi kell megválasztani és hogyan?
A terhelő erő A mérendő anyag és a golyóátmérő függvényében választhatjuk meg, úgy, hogy lenyomat d mérete 0,25 és 0,6D közé essen. : F = 9,81.K .D2 N. K a terhelési tényező (a mérendő anyag keménységétől függ!
9
K terhelési tényező
10
A mérés elvégzése A vizsgálandó felületet fémesre tisztítjuk (köszörülés) a lenyomatok a darab szélétől és egymástól legalább 2,5d - 3d távolságra legyenek. A terhelés megszüntetése után a lenyomat két egymásra merőleges átmérőjét (d) mérjük a keménységmérő gépre szerelt mérőberendezés segítségével 0,001mm pontossággal. A két érték átlagának, és a terhelő erőnek a függvényében a keménységet táblázatból keressük ki.
11
A mérés jegyzőkönyvezése
A HB keménység mérőszáma kismértékben függ a terhelő erőtől és a golyóátmérőjétől ! Ezért a mért érték mellett fel kell tüntetni a golyóátmérőt, a terhelő erőt és a terhelés idejét, ha az nem D=10 mm F= 3000 kp azaz N és 30 másodperc. Pl. 185HB2,5/187,5 A mérés D=2,5mm golyóval, 187,5 kp azaz 1840 N terheléssel történt, és a darab keménysége 185 HB
12
Alkalmazási területe, korlátok
Elsősorban öntöttvasak, könnyű-és színesfémek, kisebb keménységű, lágyított normalizált acélok mérésére használják A Brinell keménységmérés acél golyó esetén 450 HB-nél keményfém esetén 650 HB-nél keményebb anyagok mérésére nem alkalmas, mert a golyó esetleges deformációja a mérést meghamisítja. Nem alkalmas vékony lemezek mérésére, (túl nagy a benyomódás)
13
Összefüggés a HB és az Rm között
Az összefüggés közelítő, célszerű a vasalapú ötvözetek keménységi értékek összehasonlítására szolgáló szabvány használata! (MSZ )
14
Vickers keménységmérés MSZ EN ISO 6507-1(mérési elv)-2 ellenőrzés, kalibrálás
A Vickers keménységmérés során 136 csúcsszögű négyzet alapú gyémánt gúlát nyomunk F terheléssel a próbadarab felületébe
15
Vickers keménység mérőszáma
A Vickers keménység a Brinellhez hasonlóan a terhelő erő és a lenyomat felületének hányadosa. A lenyomat felületének meghatározásához a terhelés megszüntetése után a négyzet alakú lenyomat átlóit (d) mérjük.
16
Mi kell megválasztani és hogyan?
terhelés A terhelő erő 9, N azaz kp között választható az anyagminőség és a vastagság függvényében. Megjegyzés: A terhelés változtatásával a lenyomat felülete közel arányosan változik, ezért a Vickers keménység bizonyos határon belül a terhelő erőtől független
17
A mérés elvégzése A vizsgálandó felületet fémesre tisztítjuk (köszörülés) a lenyomatok a darab szélétől és egymástól legalább 2,5d - 3d távolságra legyenek. A terhelés megszüntetése után a lenyomat két egymásra merőleges átlóját (d) mérjük a keménységmérő gépre szerelt mérőberendezés segítségével 0,001mm pontossággal. A két érték átlagának, és a terhelő erőnek a függvényében a keménységet táblázatból keressük ki.
18
Kisterhelésű keménységmérés Vickers szerint
Különféle felületi hőkezelések után az edzett darabok felületi kérgében, vagy vékony lemezeken, bevonatokon stb.kis terheléssel (5 - 19,62 N azaz 0,5-2 kp) is végezhetünk Vickers keménységmérést. A mért értéknél mindig fel kell tüntetni a terhelés nagyságát pl HV 1,0 A darabot a méréshez csiszolással és polírozással kell előkészíteni. A lenyomatot 0,2 m pontossággal kell mérni.
19
Kisterhelésű keménységmérés Knoop szerint
A gyémánt benyomó szerszám, élszöge egyik irányban 130 , a másik irányban 17230'. A benyomódás felülnézetben rombusz. Ez a Knoop féle módszer. A terhelés 0, N azaz 0,1- 5 kp között változhat. A keménységet a terhelő erő és a lenyomat felületének hányadosa adja.
20
Rockwell keménységmérés (MSZ EN ISO 6508-1 (mérési elv) -2 ellenőrzés, kalibrálás)
A mérés különbözik az eddig ismertetett HB és HV módszerektől, mivel a különböző benyomó szerszámokkal létrehozott lenyomat mélységéből következtet a keménységre
21
A Rockwell keménységmérés elve
22
Rockwell keménységmérési eljárások
HRA HRB, HRC A benyomó szerszám: 1,59 mm (1/16 ") átmérőjű edzett acél golyó (HRB) 120 csúcsszögű gyémánt kúp ( HRA és HRC).
23
Rockwell eljárások (terhelés, alkalmazási terület)
24
Keménységmérő gépek
25
A keménységmérő gépek kalibrálása, hitelesítése
A keménységmérő gépek ellenőrzésére ismert keménységű etalonokat használnak. A gépeket legalább évente egyszer az arra feljogosított szervezettel ( OMH stb.) hitelesítetni kell.
26
A különböző anyagok keménységi értékei
27
Az ismételt igénybevétellel szembeni ellenállás
Azt a jelenséget, amikor egy anyag az ismételt igénybevételek során bevitt, halmozódó károsodások hatására a folyáshatárnál kisebb terhelés esetén eltörik kifáradásnak nevezzük. Az anyag kifáradása törésként jelentkezik, de a kifáradás folyamata legszorosabban a képlékeny alakváltozással kapcsolatos. Nagyon lényeges, mert a törési káresetek kb %-a a kifáradással kapcsolatos. A járműveknél ez az arány több is lehet!
28
A fáradt töret jellege két részből, egy kagylós, barázdált és egy szemcsés ridegen tört részből áll
29
Fáradt töret Jellegzetes fáradt töret forgattyús tengelyen
A repedés a feszültséggyűjtő helytől indult. A ridegen tört rész relatíve kicsi.
30
Fáradt töret Belső anyaghibából kiinduló fáradt töret (tányérkerék fog)
A repedés a feszültséggyűjtő helytől indult. A ridegen tört rész relatíve kicsi. A károsodás kiindulása
31
A kifáradásnál három részfolyamatot különböztethetünk meg
repedés keletkezés repedés terjedés (lassú) instabil repedés terjedés, törés Az ismételt igénybevételnél a feszültség általában kisebb, mint a folyáshatár Rp0,2
32
Kifáradás vizsgálata A jelenségre a múlt század második felében vasúti tengelyek hosszabb idejű üzemelése után bekövetkező jellegzetes törése hívta fel a figyelmet. A jelenséget Wöhler a vasúti tengelyek igénybevételének modellezésével vizsgálata.
33
Az igénybevétel A kifáradás során a feszültség az időben változik és sokszor ismétlődik. A vizsgálatok során a feszültség legtöbbször szinusz görbe szerint, de más jelalak szerint is változhat.
34
Vizsgálati módok
35
Wöhler görbe A görbe aszimptotikusan közelít egy értékhez, így a terhelő feszültség csökkentésével , az acélokra meghatározható egy olyan jellemző feszültség, amellyel az akár végtelen sokszor terhelhető anélkül, hogy eltörne. Ezt a feszültséget az acél kifáradási határának nevezzük. Jele: D.
36
Acélok Wöhler görbéje A Wöhler görbe két jól elkülöníthető szakaszból áll. Az első ferde , meredeken eső szakaszt élettartam szakasznak, a vízszintes részt, pedig kifáradási szakasznak nevezzük. A két egyenes acéloknál igénybevételnél metszi egymást.
37
Meghatározható-e minden anyagnál kifáradási határ?
nem minden anyagnak van kifáradási határa. Alumínium ötvözetek, saválló acélok, nagyszilárdságú acélok esetében a Wöhler görbe második szakasza nem vízszintes, így kifáradási határ nem értelmezhető.
38
A szerkezeti anyagok viselkedése ismételt igénybevétel során
Polimerek, a fémekhez hasonló, bár az anyagban zajló mikroszkópos folyamatok mások kerámiák, ridegek, esetükben kifáradásról nem beszélhetünk
39
A fárasztó vizsgálatokkal meghatározott eredmények értékelése, használata
A kifáradás sztohasztikus folyamat, nem lehet átlagolni! Az egy feszültségszinten végzett mérés nem a törést okozó igénybevételi számot, csak annak egy lehetséges értékét adja meg. Sok a véletlen tényező
40
Mi a megoldás? A mérési eredményeket matematikai statisztikai módszerekkel kiértékelve adott törési illetve túlélési valószínűséggel adhatjuk meg az adott terheléshez tartozó ismétlési számot. A matematikai statisztikai kiértékeléshez sok, feszültségszintenként legalább 10 próbatest szükséges.
41
Az eredmények megadása
42
A kifáradást befolyásoló tényezők
a terheléstől, külső körülményektől függő tényezők a darabtól függő tényezők
43
A z igénybevétel típusának hatása
Az igénybevétel típusának a hatása fontos, mert jelentős eltérést eredményez. az anyag kifáradási határa a legkedvezőbb váltakozó hajlító (1), kisebb húzó-nyomó (2) és még kisebb váltakozó csavarás (3) esetén..
44
Korróziós környezet A korrozív közeg a felületet károsítja, ezért jelentősen befolyásolja a kifáradást is
45
A darabtól függő befolyásoló tényezők A darab felülete
A fáradt törés csírája a felület. A darab felületén lévő hibák, feszültség koncentrátorok elősegítik a darab kifáradását. Fontos! A felület rontó hatása a nagyobb szilárdságú anyagoknál erőteljesebb!
46
A felület hatása A különböző mechanikus felületi kezelések, amelyek a darab felületének közelében nyomófeszültséget eredményeznek pl. a felület görgőzése, szemcseszórás, sörétezés stb. a kifáradási határt növelik. Szintén jelentősen javítják a fáradási tulajdonságokat a felületi hőkezelések pl. a betétedzés , de különösen a nagyon vékony, kemény felületi kérget biztosító nitridálás ill. nikotrálás.
Hasonló előadás
© 2024 SlidePlayer.hu Inc.
All rights reserved.