Előadást letölteni
Az előadás letöltése folymat van. Kérjük, várjon
1
Gazdaságstatisztika 10. előadás
2
Gazdaságstatisztika VALÓSZÍNŰSÉGI VÁLTOZÓ, ELMÉLETI ELOSZLÁSOK
Valószínűségszámítási alapok
3
Nyitó gondolatok A valószínűség értelmezési nehézségei
Mekkora a valószínűsége, hogy egy szabályos kockával 6-ost dobunk? Mekkora a valószínűsége, hogy holnap esni fog az eső? Mi a valószínűség? Relatív gyakorisági alapon? Hitünk foka szerint? Gazdaságstatisztika
4
Determinisztikus és sztochasztikus jelenségek
Kezdeti, kiindulási feltételekből (peremfeltételekből) mennyire tudunk következtetni a vizsgált jelenség (esemény) végkimenetelére? Két lehetőség Ha a peremfeltételeket fel tudjuk tárni, és ismertek a jelenség lefolyásának szabályai is, és ezekből a jelenség végkimenetele nagy pontossággal megadható, akkor a jelenség determinisztikus. Más szavakkal, a peremfeltételek és a jelenség lefolyásának szabályai determinálják (egyértelműen meghatározzák) a jelenség kimenetelét. Pl. Ohm-törvénye. A peremfeltételeket nem ismerjük, vagy nem akarjuk feltárni, továbbá nem ismerjük a jelenség lefolyásának pontos törvényszerűségeit, ezért a jelenség pontos kimenetele nem határozható meg. Ezek a sztocasztikus jelenségek. Pl. BUX index alakulása. Gazdaságstatisztika
5
Alapfogalmak Tömegjelenség Véletlen jelenség Valószínűségszámítás
Azonos körülmények között akárhányszor lejátszódhat Véletlen jelenség Kimenetelét a figyelembe vehető tényezők összessége nem határozza meg egyértelműen Valószínűségszámítás A véletlen tömegjelenségek törvényszerűségeinek feltárásával, leírásával foglalkozik Véletlen kísérlet Egy véletlen tömegjelenséget mesterségesen előidézünk, vagy spontán megfigyelünk Elemi esemény Egy véletlen kísérlet egy lehetséges kimenetele Gazdaságstatisztika
6
Alapfogalmak Eseménytér Esemény Biztos esemény Lehetetlen esemény
Az összes lehetséges elemi eseményből álló halmaz. Jele: (jegyzetben H) Esemény A véletlen kísérlet lefolytatása után vagy bekövetkezik, vagy nem. Általában A, B, C, … jelöljük. részhalmazai az események Egy A részhalmaz (esemény) akkor következik be, ha olyan elemi esemény következik be, amely eleme A-nak Biztos esemény Maga is egy esemény, egy olyan esemény, amely biztosan bekövetkezik Lehetetlen esemény Az üres halmazt – amely nem tartalmazza egyetlen elemét sem – mint eseményt, lehetetlen eseménynek hívjuk és -val jelöljük. Az A esemény maga után vonja B eseményt Ha valahányszor, amikor A bekövetkezik, bekövetkezik B is. Jelölése: A B. Gazdaságstatisztika
7
Műveletek eseményekkel
Komplementer esemény Az esemény az eseménytér mindazon elemeit tartalmazza, melyek az A eseményben nincsenek benne, de -hoz tartoznak Az t az A esemény komplementerének nevezzük. Események összege (egyesítése) Azt az eseményt, hogy az A és B esemény közülük legalább az egyik bekövetkezik, az A és B esemény összegének nevezzük, és A+B-vel (vagy AB-vel) jelöljük. Az A+B esemény tehát akkor következik be, ha vagy A, vagy B, vagy mindkettő bekövetkezik. Események szorzata (közös része) Azt az eseményt, amely akkor következik be, ha az A és a B esemény is bekövetkezik, azaz a két esemény egyszerre következik be, az A és B események szorzatának nevezzük, és AB-vel (vagy AB-vel) jelöljük. Előfordulhat, hogy a két esemény közös része az üres halmaz, ilyenkor a két esemény sosem következhet be egyszerre. Ekkor az A-t és B-t egymást kizáró (diszjunkt) eseményeknek nevezzük. Gazdaságstatisztika
8
Műveletek eseményekkel
Események különbsége Azt az eseményt, ami akkor következik be, ha az A esemény bekövetkezik, de B nem, az A és B események különbségének nevezzük, s A-B-vel (vagy A\B-vel) jelöljük. Teljes eseményrendszer Egy kísérlettel kapcsolatos B1, B2, …, Bn események, melyek közül egyik sem lehetetlen esemény, teljes eseményrendszert alkotnak, ha egymást páronként kizáró események, s összegük a biztos esemény. Gazdaságstatisztika
9
Műveletek eseményekkel - Példa
A valószínűségi kísérlet legyen egy szabályos kockával történő dobás Egy dobás kimenetele legyen a felső lapon látható pontszám Ekkor az eseménytér: : a felső lapon látható pontszám i, Határozzuk meg a következő eseményeket (mint halmazokat) B: páros számot dobunk C: a dobott szám kisebb 3-nál D: 1-et, 4-et, vagy 5-öt dobunk Gazdaságstatisztika
10
A valószínűség fogalma
Két megközelítés Tapasztalati valószínűség Matematikai valószínűség Véletlen kísérleteket végzünk (sokszor) és azt vizsgáljuk, hogy egy A esemény az eseték hány százalékában következik be. A tapasztalati valószínűség az a számérték, amely körül a véletlen esemény relatív gyakorisága ingadozik. Megfigyelés n-szer Az A esemény gyakorisága Az A esemény relatív gyakorisága Gazdaságstatisztika
11
A valószínűség fogalma
Valószínűségi mező Az hármas : Eseménytér, azaz az összes lehetséges elemi esemény halmaza : Események szigma algebrája, egy felett definiált algebra P: Valószínűségi mérték Valószínűségi mérték (matematikai valószínűség) i.) ii.) iii.) Ha egymást páronként kizáró események, akkor i.) –iii.) Kolmogorov axiómái A jegyzetben a iii.) axióma Ha A és B egymást kizáró események, azaz AB = 0, akkor P(A+B)= P(A) + P(B). Gazdaságstatisztika
12
Szigma-algebra (kiegészítő anyag)
Egy véletlen kísérlet esetén a megfigyelhető - azaz vizsgálataink szempontjából fontos - események összessége általában nem tartalmazza az eseménytér összes részhalmazát. Ha az eseménytér végtelen sok elemi eseményből áll, akkor nem vehetjük figyelembe az eseménytér összes részhalmazait, mert az halmazelméleti nehézségekbe ütközne. Ekkor az eseménytér részhalmazainak egy olyan összességét tekintjük, amely elég tág halmaz ahhoz, hogy minden megfigyelhető eseményt tartalmazzon, de elég szűk ahhoz, hogy halmazelméleti problémákat ne okozzon. Matematikai szempontból célszerű azt az elvárást támasztanunk, hogy a vizsgált események összessége zárt legyen a megismert, eseményeken értelmezett műveletekre. E megfontolások alapján vezetjük be a szigma-algebra fogalmát. Gazdaságstatisztika
13
Szigma-algebra (kiegészítő anyag)
Az halmazrendszert feletti szigma algebrának nevezzük, ha hatványhalmazának nem üres, azaz Bármely esetén Ha megszámlálhatóan sok halmaz, akkor azaz zárt a megszámlálható unióképzésre. Gazdaságstatisztika
14
Kolmogorov Andrej Nyikolajevics Kolmogorov (1903-1987) Mértékelmélet
Az axiomatikus valószínűségelmélet megalapítója Gazdaságstatisztika
15
Néhány alaptétel A lehetetlen esemény valószínűsége nulla
Bizonyítás Tetszőleges A eseményre: A és diszjunkt események, ezért a iii.) axióma szerint ebből Ha az A1, A2, ….An események teljes eseményrendszert alkotnak, akkor A1, A2, ….An teljes eseményrendszer => A1, A2, ….An páronként diszjunktak és A ii.) és iii.) axióma alapján: ii.) iii.) Gazdaságstatisztika
Hasonló előadás
© 2024 SlidePlayer.hu Inc.
All rights reserved.