Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

ÚTPÁLYASZERKEZETEK VÍZTELENÍTÉSE I. RÉSZ

Hasonló előadás


Az előadások a következő témára: "ÚTPÁLYASZERKEZETEK VÍZTELENÍTÉSE I. RÉSZ"— Előadás másolata:

1 ÚTPÁLYASZERKEZETEK VÍZTELENÍTÉSE I. RÉSZ
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ÚTPÁLYASZERKEZETEK VÍZTELENÍTÉSE I. RÉSZ ELŐADÓ: TÁRCZY LÁSZLÓ ÚTÉPÍTÉSI ÉS FENNTARTÁSI ÜZEMMÉRNÖK, A REFORMÚT KFT. ÜGYVEZETŐJE, AZ ÚTÜGYI VILÁGSZÖVETSÉG MAGYARORSZÁGI DELEGÁLTJA Budapest

2 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM
TERVEZÉS Az út létesítés víztelenítés=térség egyensúlyába való beavatkozás földrajzi, geológiai, hidrológiai, ökológiai Cél: - Biztonságos útfelület - Közúti üzemből eredő szennyeződések szabályozott korlátok között tartása - Pályaszerkezet víztelenítés

3 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM
Út = Akadály a vízfolyásoknak Vízfolyás = Akadály az utaknak FORGALOMBIZTONSÁG KÖZREMŰKÖDÉS MÁS TERVEZŐKKEL Talajmechanikus, úttervező, hídtervező, forgalomtechnikus

4 VIZSGÁLAT TÁRGYA TERVEZÉS SORÁN
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VIZSGÁLAT TÁRGYA TERVEZÉS SORÁN Természetes vízfolyások és az út viszonya Felszíni csapadékvíz elvezetés kérdése Vízkészlet védelem Nem tervezett közúti üzemből eredő szennyeződések minősítése, kezelése szükségessége Pályaszerkezetek víztelenítés

5 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM
Optimalizálás Egyedileg összegzett szempontrendszer szerint komplex vizsgálatot igényel. Ebből levezetett = optimalizálás. Nem megfelelő víztelenítés = rövid élettartamú út. A víz az út legnagyobb ellensége!!!

6 MI AZ ÚTPÁLYASZERKEZET?
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM MI AZ ÚTPÁLYASZERKEZET? a, Hajlékony (félhajlékony) Kopó réteg Burkolat Kötőréteg Alapréteg (1 vagy 2) Földmű védőréteggel b, Merev Betonburkolat Alapréteg Védőréteg Földmű

7 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM
TISZTÁN KÜLÖNBÖZIK Felszíni csapadékvíz elvezetés Pályaszerkezetbe, földműbe jutó vizek elvezetése Talajvíz, rétegvíz, belvíz, forrás, szivárgó vizek függetlenül, szinte a pálya szerkezettől

8 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM
DRÉNEZÉS FOGALMA Összegző fogalom: Talajban, pályaszerkezetben megjelenő vizek elvezetése, kártétel nélküli elvezetés „Belső” vizek eredhetnek: - Infiltráción keresztül – rétegek között, talaj pályaszerkezete között - Padkán keresztüli beszivárgásból a rétegek határaihoz érkezve alaprétegig érkezve - Oldalról vízgyűjtő felől, bevágásban felszín alatti vizekből

9 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM
MIKOR KELL DRÉNEZNI? Szisztematikusan kell: A földmű felületéről elvezetni Az alaprétegből kivezetni ha az nem kötött, ha kötött a felületéről elvezetni Építés közbeni drénezés Vizsgálat, ha 2,2 m-nél jobban megközelíti a pályaszintet a talajvíz, fagyvédelem Tartós földmű védelem

10 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM
A víz jelen van: - több kevesebb mennyiségben természetben - Rézsün, töltésben, bevágásban - Útfelületen - Padkán Jól drénezett pályaszerkezet = megfelelően szilárd földmű, teherbírás megfelelő, E2 ≥ 40 N/mm2 élete során Fagy-olvad, fagy-olvad, páralecsapódás, vízfeldúsulás, stb. Pályaszerkezet alá víz juthat! TARTÓSAN kell védeni a víz (belső) hatásától a pályaszerkezetet és a földművet.

11 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM

12 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM

13 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM

14 DRÉNEZÉS HATÁSA A KÖRNYEZETRE
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM DRÉNEZÉS HATÁSA A KÖRNYEZETRE Hazai szabályozás szegényes Negatív következmények is lehetnek Környező növényzet kiszárad, korábbi egyensúly felborul, süllyedések keletkezhetnek! Bevágásban felborul az egyensúly a hirtelen leszállított talajvíz, talajtörést, csúszást is eredményezhet Vízfolyás irányának megváltoztatása gáthatást káros feldúsulást eredményezhet

15 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM
Pályaszerkezet belső víztelenítése alapvetően különbözik a felszíni víztelenítéstől Magyar klíma és talajelőfordulások néhány sajátos kivételtől eltekintve igényli a pályaszerkezet víztelenítést A drén szerkezettervezés nem lehet automatikus komoly mérlegelést, vizsgálatot igényel

16 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM
Azzal az illúzióval, hogy a kopóréteg és a pályaszerkezet víztaszító, vízzáró LE KELL SZÁMOLNI! Üzemeltetés hiányosságai, keletkező mikrorepedések, ezek elfajulása, eltérő hővezetőképességű anyagok érintkezései felületei kritikusak vízbejutás szempontjából Hajlékony pályaszerkezetek sebezhetőbbek pláne a MAKADÁM alapúak A vizek stagnálása a fagy-olvad és a forgalmi terhelés együttes igény-bevétele felgyorsítja a pályaszerkezet tönkre menetelét

17 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM
Talajfajták Jól drénező talajok, nem szükséges külön drén tervezése – homokok, homok lisztek, homokos kavics Előnytelenek Ip ≥ 15%-25% - iszapos anyagok, enyhén kötött talajok – Drénezés elengedhetetlen Nagyon előnytelen talajok: Ip ≥ 25% quasi vízzárók, vagy vízzárók: itt gondos tervezés szükséges Előnyösek a bitumennel kezelt rétegek, előnytelenek a ckt típusú alaprétegek Pályaszerkezet szélesítés = kötelező a drénezés! Padka víztelenítése is fontos

18 Különösen érzékeny helyszínek
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Különösen érzékeny helyszínek Középső szigetek Elválasztó sáv (ha van ilyen) Bevágás, töltés találkozása („0” pont) Hosszú emelkedő Mély pont a hossz-szelvényen Hidak előtti szakasz esésben

19 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM
Mart aszfalt padka alsó anyaga drén kivezetésre (geotextíliába csomagolva) Rézsün a kivezetést nem szabad humuszolni, füvesíteni. Ok: gáthatás Útszélesítés, földmű szélesítés mm magas és széles lépcsőkkel vízkivezetés 4% oldaleséssel célszerű geomembránnal kombinálva Teljes pályaszerkezet csere esetén geomembrán elhelyezése javasolt Kapilláris vízemelkedés gátlása, páramozgás lekezelése, kiszáradás, zsugorodás ellensúlyozása

20 TÖNKREMENETEL FAGY-OLVADÁSI KÁROK MIATT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM TÖNKREMENETEL FAGY-OLVADÁSI KÁROK MIATT Kockázatok: Nem a használati forgalomhoz illeszkedő teherhordó pályaszerkezet és földmű Felszíni csapadékvíz elvezetés nem megfelelő padkák „felhíztak” víz bejutás+forgalmi terhelés Pályaszerkezet víztelenítés hiánya Földmű nem megfelelősége Fagy és olvadási károkkal szemben nem elég ellenálló a pályaszerkezet Nincs a koronaélen túl víztelenítés (sem árok, sem egyéb gravitációs vízelvezetés)

21 EGY KIS ISMÉTLÉS TALAJMECHANIKÁBÓL
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM EGY KIS ISMÉTLÉS TALAJMECHANIKÁBÓL

22 A földműanyagként való felhasználás minősítése
M-1 Kiváló földműanyagok a durva szemcséjű, S0,063  5 % jellemzőjű talajok (kavicsok, homokos kavicsok, kavicsos homokok és homokok), ha Cu  6 és szemeloszlásuk folytonos. M-2 Jó földműanyagok a durva szemcséjű, S0,063  5 % jellemzőjű talajok (kavicsok, homokos kavicsok, kavicsos homokok és homokok), ha Cu  6 és szemeloszlásuk hiányos, illetve ha 3  Cu  6 és szemeloszlásuk folytonos, a vegyes szemcséjű, 5  S0,063  15% jellemzőjű talajok (iszapos és/vagy agyagos kavicsok és/vagy homokok), ha szemeloszlásuk folytonos, a mállásra nem hajlamos, folytonos szemeloszlású kőzettörmelékek, ha legnagyobb szemcseméretük nem nagyobb 200 mm-nél. M-3 Megfelelő földműanyagnak minősítendők a durva szemcséjű, S0,063  5 % jellemzőjű talajok, ha 3  Cu  6 és szemeloszlásuk hiányos, a vegyes szemcséjű, 5  S0,063  15% jellemzőjű talajok (iszapos és/vagy agyagos kavicsok és/vagy homokok), ha szemeloszlásuk hiányos, a vegyes szemcséjű, 15  S0,063  40 % (és IP  10 %) jellemzőjű talajok (erősen iszapos és/vagy agyagos kavicsok és/vagy homokok), ha 8  w  18 %, a finom szemcséjű talajok, 10 < IP  25 % jellemzőjű talajok, ha 10  w  20 %, a mállásra nem hajlamos, kissé változó szemeloszlású kőzettörmelékek, ha legnagyobb szemcseméretük nem nagyobb 200 mm-nél. M-4 Elfogadható földműanyagnak minősítendők a durva szemcséjű, kissé szerves talajok, ha Cu  3,  finom szemcséjű a 25 < IP  40 % jellemzőjű talajok, ha 12  w  24 %, a mállásra nem hajlamos, kissé változó szemeloszlású kőzettörmelékek, ha legnagyobb szemcseméretük nem nagyobb 320 mm-nél.

23 A földműanyagként való felhasználás minősítése
M-5 Kezeléssel alkalmassá tehető földműanyagok közé sorolandók a durva szemcséjű talajok, ha Cu < 3, a vegyes szemcséjű, 15  S0,063  40 % (és IP  10 %) jellemzőjű talajok (erősen iszapos és/vagy agyagos kavicsok és/vagy homokok), ha w < 8 %, illetve w  18 % a finom szemcséjű, 10 < IP 25 % jellemzőjű talajok, ha 7 < w < 10 %, illetve 20 < w < 24 %, a finom szemcséjű, 25<IP40 % jellemzőjű talajok, ha 8 < w < 12 %, illetve 24 < w < 28 %, az aprózódásra és mállásra enyhén hajlamos és/vagy változékony szemeloszlású kőzettörmelékek. M-6 Földműanyagként nem hasznosítható talajnak tekintendők a finom szemcséjű, 10 < IP  25% jellemzőjű talajok, ha w  7 %, illetve w  25 %, a finom szemcséjű, 25 < IP  40% jellemzőjű talajok, ha w  8 %, ill. w  30 %, a finom szemcséjű, IP  40% jellemzőjű talajok, a közepesen és nagyon szerves talajok, a szikes talajok, a mállásra hajlamos talajok vagy kőzetek, azok a talajok, melyeknek a módosított Proctor-vizsgálattal meghatározott legnagyobb száraz térfogatsűrűsége kisebb rdmax < 1,65 g/cm3. A talajok besorolásakor a kitermelési és a beépítési viszonyokat is mérlegelni kell. Egy talaj besorolása javítható, ha azt a tervező speciális vizsgálatokkal meggyőzően igazolja.

24 A talajok térfogat-változási hajlamának minősítése
D-1 Nem térfogatváltozó a talaj, ha plaszticitási indexe IP  15 %, iszap+agyag-tartalma S0,063  40 %. D-2 Kissé térfogatváltozó a talaj, ha plaszticitási indexe 15  IP  20 %, lineáris zsugorodása ℓ  3 %. D-3 Közepesen térfogatváltozó a talaj, ha plaszticitási indexe 20  IP  30 %, lineáris zsugorodása 3  ℓ  6 % D-4 Nagyon térfogatváltozó a talaj, ha plaszticitási indexe 30  IP  40 % lineáris zsugorodása 6  ℓ  9 %. D-5 Különösen térfogatváltozó a talaj, ha plaszticitási indexe IP  40 %, lineáris zsugorodása ℓ  9 %.

25 Agyagok beépíthetősége

26 Az erózió- és vízérzékenység megítélése
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Az erózió- és vízérzékenység megítélése Kritikus talajok alacsony plasztikus indexű talajok homoklisztek, iszapok Védekezés megfelelő tömörség egyenletes lefolyást biztosító rendezett felület ideiglenes takarás pl. fóliával, textíliával gyors füvesítés

27 A talajok vízvezető-képességének minősítése
V-1 Vízszállító a talaj, ha vízáteresztő-képességi együtthatója k  510-3 m/s, durva szemcséjű és kavicstartalma S2,0  80 %. V-2 Jó vízvezető a talaj, ha vízáteresztő-képességi együtthatója 510-5  k  510-3 m/s, kavics és/vagy homok alkotja és iszap+agyagtartalma S0,063  5 %. V-3 Közepesen vízvezető a talaj, ha vízáteresztő-képességi együtthatója 10-9  k  510-5 m/s, vegyes szemcséjű és 5  S0,063  40 %, továbbá IP  10 %. V-3 Gyengén vízvezető a talaj, ha vízáteresztő-képességi együtthatója 510-11  k  10-9 m/s, finom szemcséjű és 10  IP  30 %. V-3 Vízzáró a talaj, ha vízáteresztő-képességi együtthatója k  510-11 m/s, finom szemcséjű és IP  30 %.

28 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM
Fagyveszélyesség

29

30 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM

31

32 Felszín alatti víztelenítés
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Felszín alatti víztelenítés a földmű felé szivárgó vizek felfogása övszivárgóval vízszint csökkentése a rézsűkben kersztszivárgóval vízszintcsökkentés a pálya alatt oldalszivárgóval „vízszintes” drénező furatokkal, csápos kutakkal

33 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM

34 Hagyományos árkos szivárgó

35 Szivárgóépítés hasított réssel

36 Szivárgó irányított fúrással összekötött fúrt kavicscölöp-sorból

37 Az azonosítás és osztályozás tartalma az új MSZ EN szerint
Alapvető jellemzők szemcseméret, frakciók plaszticitás szervesség tagoltság rétegzett, keveredett jelleg geológiai eredet Másodlagos jellemző állapot egyéb alkotórész szemalak szemcseérdesség szag, szín helyi elnevezés


Letölteni ppt "ÚTPÁLYASZERKEZETEK VÍZTELENÍTÉSE I. RÉSZ"

Hasonló előadás


Google Hirdetések