Előadást letölteni
Az előadás letöltése folymat van. Kérjük, várjon
KiadtaKlára Ráczné Megváltozta több, mint 10 éve
1
OXIGÉN HÁZTARTÁS
2
EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2
3
SZENNYVÍZ HATÁSA (EMISSZIÓ – IMMISSZIÓ) BOI 5 emisszió nő, BOI 5 koncentráció nő, oldott O 2 koncentráció csökken (és fordítva) O 2 fontos vízminőségi indikátor VÍZMINŐSÉGI OSZTÁLYOZÁS (O 2 esetére) nyers szennyvíz: O mg/l telítési koncentráció “tiszta” vízben (Henry törvény): ~ 10 mg/l (20 °C ) halak megóvása, szaporodása: 6 mg/l eltérő érzékenység: ivadék kora, halfajok (pl. pisztráng 6-7 mg/l, ponty 4 mg/l) vízhasználatok integrált osztályozás
4
MÉRLEG SZERVESANYAG (C, N) ÜLEDÉK LÉGZÉS LÉGKÖRI DIFFÚZIÓ FOTOSZINTÉZIS MELLÉKFOLYÓK Oldott oxigén egyenlet:
5
nap O 2 fogyasztás Szerves szén (C) lebontása BOI 5 BOI 5 L Oxigén fogyasztás (BOI: 2.7 g O2 = 1 g szerves C) L – maradék oxigén igény (BOI) - többlépcsős kinetika L0L0 L 0 = BOI 1. rendű kinetika (exponen- ciális) L (t) = L 0 exp(-k 1 t) BOI 5 = BOI - BOI exp(-k 1 5)= BOI (1-exp(-k 1 5)) BOI = L 0 - L 0 exp(-k 1 t)=L 0 (1-exp(-k 1 t))
6
Lebomlási tényező (k 1 ) Lebontási folyamatok sebességét jelzi, kinetikai állandó Dimenzió: 1/nap Hőmérsékletfüggő = 1.04 T T limit 20C 1 Érvényesség ! Függ a szennyvíztisztítás mértékétől Technológiak 1 (T=20C)f Nincs tisztítás0.351.2 Mechanika0.21.6 Mechanika+kémiai kicsapatás0.152.0 Biológiai tiszt.0.083.2
7
Oxigén bevitel (légköri diffúzió) C < Cs C C s – telítési koncentráció Henry törvény: p = He C s p – parciális nyomás He – Henry szám f(T, P, sótartalom, stb.) T CsCs sótartalom TC s (mg/l) 014.6 1510 209 307.6
8
Oxigén bevitel (légköri diffúzió, film elmélet) C V hh Molekuláris diff. tényező (m 2 /s) Oxigén átadási tényező (m/nap) Fajlagos oxigén beviteli tény.(1/nap) Megoldás: exponenciális (D = C S - C)
9
Oxigén beviteli tényező (k 2 ) Mi befolyásolja? - Áramlás jellemzői: turbulencia - Vízmélység, sebesség - Empirikus összefüggések - Érvényesség, dimenzió és kis H!!! EPA procedúrak 2 0.1.. 100 Mérés -Helyszíni nyomjelzős kísérletek illékony gáz injektálásával (etilén, propán, propilén, kripton)
10
CEE 5134 - 10 - Fall, 2007 Atmospheric Reaeration Depth, (m) Depth, (ft) Method of Covar (1976) Uses formulae of: –O’Connor & Dobbins –Churchill –Owens-Gibbs Input stream velocity and depth of flow Select k r (d -1 ) at intersection of flow and depth coordinates
11
CEE 5134 - 11 - Fall, 2007 Reaeration Coefficient Estimation from Stream Descriptions Water Body Descriptionk r (days -1 @ 20 o C) Small ponds and backwaters0.10-0.23 Sluggish streams and large lakes0.23-0.35 Large streams of low velocity0.35-0.46 Large streams of normal velocity0.46-0.69 Swift streams0.69-1.15 Rapids and waterfalls> 1.15 Source: Peavy, Rowe and Tchobanoglous, 1985
12
CEE 5134 - 12 - Fall, 2007 Simplified Schematic Representation of Model Assume PF and define control volume as a unit rectangle Control volume moves downstream at constant velocity Determine the initial oxygen content after mixing (L 0 ) Compute DO at any time by solving differential equation for BOD exertion and atmospheric reaeration
13
Folyóra Q, v L h, C h q, L szv, C szv Feltételek: permanens (Q(t), E(t)=konst, 1D (azonnali elkeveredés), prizmatikus meder Szerves C (BOI) egyenlet: Vagy:levonulási idő (utazunk a folyón) L 0 számítása (1D): azonnali elkeveredés!
14
Folyóra Oldott oxigén (inhomogén lineáris diff. egyenlet) : D = C s - C deficit Q, v L h, C h q, L szv, C szv
15
Folyóra Q, v L h, C h q, L szv, C szv L x, t* LhLh L0L0 C ChCh C0C0 Cs C min x krit, t* krit D0D0 D max
16
Components of the Oxygen Sag Curve
17
CEE 5134 - 17 - Fall, 2007 Definitions for the DO Sag Curve
18
Kritikus hely meghatározása Minimum: 0 2 1.5 – 2 nap Hígulás: L 0, D 0 D max, C min. Szabályozás. Iteráció. Mérés! Több szennyező: szuperponálható
19
Több szennyvízbevezetés Q, v L h, C h q 1, L szv 1, C szv 1 x, t* L LhLh L0L0 C ChCh C0C0 Cs C min x krit, t* krit D0D0 D max L h2 q 2, L szv 2, C szv 2 C h2 D o2
20
Streeter-Phelps (1925) oxigén modell Továbbfejlesztések: 1.Nitrifikáció egyszerűsítve 2.Nitrifikáció részletesebben 3.Szervesanyag oldott és ülepedő frakciók különválasztása 4.Üledék oxigén igénye 5.Fotoszintézis, légzés 6.Speciális eset: anaerob szakasz számítása Szervesanyag lebomlás egyenlete (L: BOI ∞ ) Oldott oxigén egyenlete (C: O 2 )
21
Nitrifikáció egyszerűsítve 5 20 nap BOI BOI C BOI N Kjeldahl N (Szerves N, NH4-N) - L N --> mérés Két lépés: Nitrosomonas 2NH 4 + + 3O 2 2NO 2 - + 2H 2 O + 4H + Nitrobacter2NO 2 - + O 2 2NO 3 - 3.43 g O 2 1.14g O 2 : 4.57 g O 2 L N =BOI N = 4.57KN Feltételek: - Nitrifikáló (aerob autotróf) baktériumok, - Lúgos környezet (pH > 6), - Oxigén jelenléte, oldott oxigén > 1-2 mg/l, - Toxikus anyagok gátolják! Tisztított sz.víz? - Hőmérsékletfüggő - Legegyszerűbb leírás: L = BOI C + BOI N
22
Szervesanyag oldott és ülepedő frakciók különválasztása L p = f p Lpartikulált L d = f d Loldott t L0L0 ülepedés biológiai oxidáció
23
Nitrifikáció N forgalom N1 N2 N3 Ülepedés Denitrifikáció Növényi asszimiláció Hidrolízis, ammonifi- káció Nitrifikáció O2O2O2O2 N1 – szerves N, N2 – NH4-N N3 – NO2-N, NO3-N N1N1 N2N2 N3N3 Oldott O 2 egyenletbe: - k nitrif 4.57 N2
24
Üledék oxigén igénye Okok: -szennyvíz ülepedő részecskéi iszapréteget képeznek -elhalt növények, falevelek felhalmozódása -alga ülepedés Magas szervesanyag tartalmú üledék (iszap): -felső részében aerob, alsó részében anaerob lebomlási folyamatok oxigén elvonása a vízből -lebomlás CO 2, CH 4, H 2 S képződés -gázképződés felszálló buborékok, iszap flotációja -esztétikai problémák Közelítés: konstans (?) megoszló terhelés (S) „SOD” S (g O 2 / m 2,nap) ÜledékS (gO 2 /m 2,nap) Települési szennyvíz(iszap) bevezetés környezetében 2-100 (4) Szennyvízbevezetés alatti szakaszon 1-2 (1.5) Homokos üledék0.2-1 (0.5) Árapályos folyamtorkolati iszap0.05-0.1 (0.07)
25
Fotoszintézis, légzés 6CO 2 + 6H 2 0 C 6 H 12 O 6 + 6O 2 Napfény, glükóz Fotoszintézis (P mgO 2 /m 3,nap) 6CO 2 + 6H 2 0 C 6 H 12 O 6 + 6O 2 Légzés (R mgO 2 /m 3,nap) Sötétben t (h) P, R 24 t (h) O2O2 24 Cs túltelítettség CC t1t1 t2t2 PaPa PmPm Napi átlagos O 2 termelés Pm mérésből: fotoperiódus R, P számításból: alga egyenlet (Klorofill-a * a = P) Oldott O 2 egyenletbe
26
Oxigén vonal (ill. összes oldott oxigén deficit) számítása Deficit kezdeti értéke Szerves C lebontás Nitrifikáció Üledék oxigén igénye Fotoszintézis Vízinövényzet légzése
27
Anaerob szakasz számítása Nagy terhelés Időszakos vagy állandósult anaerob állapot Anaerob lebomlás, gázképződés, fémek visszaoldódása C t* L x1x1 1. Anaerob szakasz kezdete: x 1 (C=0) 2. Anaerob szakasz: x1x1 L1L1 3. Anaerob szakasz vége: x 2 x2x2 L2L2 x2x2
28
Példa: Szennyvízbevezetés hatása a befogadó oldott oxigén koncentrációjára (1 D, permanens) Települési szennyvíz jellemzői:LE 120 000 BOI 5 koncentráció: 600 mg/l Kjeldahl N: 120 * 4.57 = 548 mg/l q = 120 000 * 0.1 = 12000 m 3 /nap = 0.14 m 3 /s Befogadó vízfolyás jellemzői:Háttér koncentrációk: L h = 5 mg/l, C h = 8 mg/l T = 25 C, v = 0.5 m/s, Q = 15 m 3 /s, Cs = 8.4 mg/l k 1 = 0.42 1/nap, k 2 = 0.7 1/nap Kezdeti értékek: L 0 = 16.6 mg/l, D 0 = 0.47 mg/l Kritikus hely: t krit = 1.9 nap, x krit = 82 km C min = 3.6 mg/l Hígulás szerepe
47
Szabályozás: oxigén háztartás javítása Emisszió csökkentésének eszköze: Szennyvíztisztítás Települési (kommunális szennyvíz) – BOI, kN Ipari szennyvíz: élelmiszeripar (konzervgyár, vágóhíd, húsüzem, cukorgyár, szeszipar stb – BOI,KOI, kN), vegyipar (műtrágyagyártás – NH4), papírgyártás (KOI) Eleveniszapos szennyvíztisztító telep kémiai kicsapatással Mechanikai tisztítás+kémiai előkezelés Biológiai tisztítás
48
Szennyvíztisztítási technológiák relatív költsége és tisztítási hatásfoka Szennyvíz tisztítási technológia Rel. költségekTisztítási hatásfokok (%) N formák aránya (%) BerÜzemBOIÖNÖPNH 4 NO 3 Mechanika1.0 305151000 M + Kicsapatás1.091.55515751000 Nagyterhelésű biológia1.401.79215251000 Kisterhelésű biológia1.702.0951530595 Nagyterhelésű Bio + P1.452.09225901000 Kisterhelésű Bio + P1.752.39525955 NB +P +részleges N1.952.49560955 NB + P + teljes N2.403.09585950100
49
Nyers szennyvíz* mg/L Elfolyó tisztított szennyvíz mg/L KOI55050 BOI 5 30010 Tot-N5012 Tot-P81 ÖLA2005 Délpesti szennyvíztisztító telep - Budapest Technológia: Alap: nagyterhelésű biológiai tisztítás Biofilterek: nitrifikáció és denitrifikáció (methanol adagolással) Kémiai P eltávolítás (szimultán és utó kicsapatás) Iszap rothasztás + biogáz hasznosítás (kb. az energiaszükséglet 2/3-a)
50
Északpesti szennyvíztisztító telep - Budapest Technológia: Nagyterhelésű eleveniszapos (Szovjet technológia) Fejlesztés: (2004) Részleges nitrifikáció Kémiai előkezelés szeparált medencékben Iszap víztelenítés, (rothasztók építése folyamatban) Nyers szennyvíz mg/L Elfolyó tisztított szennyvíz mg/L KOIKOI58261 BOI 5 35812 Tot-N4731 Tot-P82 ÖLA22512
51
Oroszlány: Membrán (MBR) technológia (2004)
52
Oroszlány MBR tisztítási hatásfokok: Nyers szennyvíz Tisztított víz Határérték KOI mgO2/l 1045 1975 BOI5 mg/l 4963,025 pH pH7,727,946,5-9 ÖN mg/l 124,56,030 ÖKN mg/l 122,51,3 NO3 mg/l 0,6 36 NH4 mg/l 88888888 0,12 5 ÖP mg/l 9,31,82 ÖLA mg/l 3832100 Összes oldószer extract mg/l 434343430,75
53
GYÖKÉRMEZŐS TISZTÍTÁS - SZÜGY
54
ÉPÍTETT VÍZINÖVÉNYES SZENNYVÍZTISZTÍTÓ RENDSZEREK LEBEGŐHÍNÁROS RENDSZER
55
FAÜLTETVÉNYES SZENNYVÍZTISZTÍTÓ RENDSZEREK
56
TAVAS SZENNYVÍZTISZTÍTÓ RENDSZEREK A tavak az I., a II. vagy a III. tisztítási fokozat szerepét töltik be. Utótisztításként is alkalmazzák. Általában sorbakötött tó-egységek: Anaerob tó 3 – 5 m vízmélységgel Fakultatív tó 1,2 – 1,8 m vízmélységgel Utótisztító aerob tó 0,7 – 1,0 m vízmélységgel A fakultatív tóban lejátszódó átalakítási folyamatok
57
Vízminőségi hatások különböző hígulási viszonyok esetén az alkalmazott tisztítási technológia függvényében
58
1990 2003 2015
59
HÍGULÁSI ARÁNY (2003) Dilution (Q/q)
60
HÍGULÁSI ARÁNY (2015)
61
Következtetések a befogadó terhelhetőségétől függően a szennyvíztisztítási technológia megválasztására Hígulás (befogadó/szennyvíz hozam aránya, Q/q) a vízminőségi hatás szempontjából (oxigén viszonyok) meghatározó.Hígulás (befogadó/szennyvíz hozam aránya, Q/q) a vízminőségi hatás szempontjából (oxigén viszonyok) meghatározó. A szennyvíztelepeken nitrifikáció előírása fontos,A szennyvíztelepeken nitrifikáció előírása fontos, Dombvidéki vízfolyáson Q/q<30,Dombvidéki vízfolyáson Q/q<30, Síkvidéki vízfolyásnál Q/q <100,Síkvidéki vízfolyásnál Q/q <100, Pangó (kis esésű) víznél Q/q <200 esetén.Pangó (kis esésű) víznél Q/q <200 esetén.
62
Települési diffúz szennyezések csökkentése: Csatornázatlan települések - szikkasztott szennyvíz Csatornázás, rákötés a meglévő rendszerre - illegális szennyvízbevezetések felszámolása Házi szennyvíztisztítók (oldómedence + szikkasztás) – szakszerű egyedi szennyvízelhelyezés Belterületi állattartás szabályozása (trágyatárolás – szigetelés, fedés) Felszíni szennyeződések lemosódása Köztisztasági tevékenység Lefolyás szabályozás (vízvisszatartás – beszivárogtatás, lefolyás hullám késleltetése tározással) Csatornázás: egyesített rendszer elválasztott rendszer
64
Egyszerű oldómedence és hagyományos (szikkasztásra alkalmas helyi talajban kialakított) dréncsövezett szikkasztó rendszer Bővített oldómedence, kis mélységű, homokkal töltött árkos szikkasztó rendszer és adagoló szivattyú Bővített oldómedence, homokszűrő és dombként kiemelkedő rendszer, adagoló szivattyúkkal
65
Szennyezőanyag Esemény-átlagkoncentráció (EMC) középértékek Medián90%-os percentilis Összes lebegőanyag [mg/l]141–234424–671 BOI 5 [mg/l]10–1317–21 KOI [mg/l]73–92157–198 Összes foszfor [mg/l]0,37–0,470,78–0.99 Oldható foszfor [mg/l]0,13–0,170,23–0,30 TKN [mg/l]1,68–2,123,69–4,67 NO 2+3 -N [mg/l]0,76–0,961,96–2,47 Összes Cu [ g/l] 38–48104–132 Összes Pb [ g/l] 161–204391–495 Összes Zn [ g/l] 179–226559–707 Átlagos városi helyszín felszíni lefolyásának vízminőségi jellemzői a National Urban Runoff Project (NURP) felmérése alapján
66
Szennyezőanyag lemosás: „first flush”
67
Vízvisszatartás: porózus burkolat kivitelezése vízáteresztő és vízzáró altalaj esetén
68
Homokszűrős víznyelő Füvesített árok
69
Időszakos tározómedence sémája
70
Állandó tározómedence sémája
71
Egyéb pontszerű szennyezőforrások: Állattartó telepek (BOI, NH4-N) Megfelelő trágyatárolás Hígtrágyás állattartás almos trágyázás, Mezőgazadasági felhasználás (újrahasznosítás) Hulladéklerakók csugalékvizei Megfelelő műszaki védelem Rekultiváció (felhagyott) Halastavak vízleeresztése Jó tógazdálkodási gyakorlat Leeresztés korlátozása Termálvíz bevezetés Visszasajtolás (csak hő hasznosítása esetén) Tározás visszavezetés előtt
74
Eszközök az oxigén háztartás javításához Öntisztulás javítása, oxigén bevitel fokozása: Fenéklépcső, fenékküszöb,bukó stb. (hosszirányú átjárhatóság korlátozása miatt ökológiai szempontból nem jók), szűkület, surrantó Iszapkotrás, üledék eltávolítása (folyók, tavak) Természetközeli (ökológiai szemléletű) mederrendezés Kanyargós meder (meanderezés), parti zóna megléte Csobogók, kiöblösödések változatosabb élőhelyek, gazdagabb élővilág szabálytalanabb áramlás, oxigén bevitel növelése hosszabb tartózkodási idő, öntisztulás természetes ártér, hordalék visszatartás Tavak oxigén ellátottságának javítása Hipolimnion (alsó réteg) levegőztetése, cirkuláció (csak mély tavakban)
75
Belterületi szakasz: Egyenes, burkolt trapézmeder
76
Kisvízi meder kiszélesítése, lankás rézsű - meanderezés kialakul Belterületi természetes állapotú szakasz
77
Függőleges vonalvezetés, fenéklépcső Függőleges vonalvezetés, surrantó
78
Az oxigén beviteli tényező hatása a kritikus oxigén koncentrációra, különböző hígulási arányok mellett
80
Kombinált partvédelem elhabolás ellen Árnyékolt meder
81
DOMBVIDÉKI KIS- ÉS KÖZEPES VÍZFOLYÁSOK REHABILITÁCIÓJA
82
http://digiscience.hu/wwf/wwf_trapezmeder.html
Hasonló előadás
© 2024 SlidePlayer.hu Inc.
All rights reserved.