Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Transzportfolyamatok II. 3. előadás

Hasonló előadás


Az előadások a következő témára: "Transzportfolyamatok II. 3. előadás"— Előadás másolata:

1 Transzportfolyamatok II. 3. előadás

2 2D transzport egyenlet turbulens áramlásban (C H menti átlag):
- Dx*, Dy* 2D egyenlet turbulens diszperziós tényezői (Taylor) - Mélység mentén vett átlag (H) 1D transzport egyenlet turbulens áramlásban ( A menti átlag): - Dx** 1D egyenlet turbulens diszperziós tényezője - Keresztszelvény területre vonatkoztatott átlag (A)

3 NAGYSÁGRENDEK Hosszir. diszperzió (1D) Hosszir. diszperzió (2D)
Keresztir. diszperzió (2D) Vízsz. ir. turbulens diff. Tavak Függ. ir. turbulens diff. Mély réteg Felszíni réteg Molek. diff. pórusvíz cm2/s

4 TRANSZPORTEGYENLET ANALITIKUS MEGOLDÁSAI
Szennyezőanyagok permanens elkeveredése Szennyezőanyag-hullám levonulása Fő lépések: Medergeometria, sebesség, vízmélység (mérés, számítás) Diszperziós tényező(k) 2D, 1D Analitikus megoldások csak egyszerűbb esetekben vezethetőek le közelítő számítások Pontosabb számítások mérések alapján, numerikus módszerekkel (kalibrálás, igazolás)

5 PERMANENS ELKEVEREDÉS
Időben állandósult szennyezőanyag-emisszió Permanens kisvízi vízhozam Állandó sebesség, vízmélység és diszperziós tényezők 2D-egyenlet, mélység menti változás elhanyagolása (sekély folyó) = × + ) ( c v h y x t D Konvekció áthelyeződik Diszperzió szétterül 2 y c D x v = Kezdeti feltétel: M0 (x0, y0) - emisszió Peremfeltétel: ¶c/¶y = 0 a partnál

6 Sodorvonali bevezetés
x B M [kg/s] y cmax M - v y 2 c (x, y) = exp( x ) 2 h D P v x 4 D x y x y cmax Hosszirányban: x-½ függvény szerint Keresztirányban: Gauss (normál) - eloszlás x y v D 2 = s

7 Sodorvonali bevezetés
M C (x1, y) Bb x B y 1 L x1 x y cs v D B 2 3 . 4 = Bcs: 0.1 cmax-nál s × 15 csóvaszélesség B ~ Bcs 2 1 027 . B D v L y x = első elkeveredési távolság

8 x y B v D B 2 15 . = M 11 . B D v L = ) 4 exp( x D y v h M c - P =
Parti bevezetés M x C (x1, y) y B ) 4 exp( 2 x D y v h M c - P = x1 cmax x y cs v D B 2 15 . = 2 1 11 . B D v L y x =

9 Partközeli bevezetés (általános alak)
y0 M x C (x1, y) y B x1 M -v ( y-y0 )2 -v ( y+y0 )2 c = (exp ( x ) +exp ( x )) 2h D P v x 4 Dy x 4 Dy x y x cmax y0 = 0 → parti y0 = B/2 → sodorvonali

10 Partélek figyelembevétele (teljes folyószakasz)
M1** Peremfeltétel: tükrözési elv alkalmazása C (M1) 2B M1 Ctükr = C (M1) + C (M1*) B 2B B M1* C (M1*)

11 Partélek figyelembevétele (teljes folyószakasz)
Matematikai leírás: végtelen sor megjelenése A parttól y0 távolságra lévő bevezetés esetén: x v D 2h M c y ) 4 exp ( Dy ( y-y0 +2nB)2 -v P = + exp ( ( y+y0 -2nB)2 n=∞ n=−∞ ( + Teljes elkeveredés: a koncentráció keresztszelvény menti változása 10 %-nál kisebb L2 ~ 3L1 második elkeveredési távolság

12 Több szennyezőforrás esete
C1 M1 C = C1 + C2 M2 C2 Több bevezetési pont vagy diffúzor sor: szuperpozíció elve Elkülönített számítás minden egyes bevezetési pontra majd összegzés

13 NEM-PERMANENS EMISSZIÓ: SZENNYEZÉS HULLÁM
Lökésszerű, havária-jellegű terhelések Időben erősen változó terhelések 2D-esetben = + ) ( c v x t y D

14 = ¶ ¶C + x v t C D ) 4 ( exp( t D v x A G C - P = Lökésszerű terhelés
1D-esetben (keskeny és sekély folyók) = ¶C + x v t C 2 D 2 ) 4 ( exp( t D v x A G C - P =

15 t D 2 = s s L 3 . 4 = 2 t D A G Cmax P = Lökésszerű terhelés C
C (t1,x) C (t2,x) Lc1 Lc2 x1 = vx t1 x2 = vx t2 x 2 t D A G Cmax x P = Egy rögzített pillanatban (x/vx) s x c L 3 . 4 = t D x 2 = s

16 t D 2 = s s = 2 D t B L 3 . 4 = s B 3 . 4 = s x B y L G [kg] ) 4 (
Lökésszerű terhelés C (t2, x, 0) c2 L G [kg] C (t2, x2, y) c2 B x x1=vt1 B y x2=vt2 cmax ) 4 ( exp( 2 t D y v x ht G c - P = t D x 2 = s s = 2 D t y y x c L 3 . 4 = s y c B 3 . 4 = s

17 Időben változó kibocsátás
) 1 ( 4 )) exp( 2 / t i D v x A M C n - P = å ] / [ s kg M i t D i=1 i=n Diszkretizálás elemi egységekre (közel konstans terheléssel) majd szuperpozíció (egymást követő lökésszerű terhelések) Gi ~ Mi · Δt t - (i-1) · Δt ≥ 0

18 NEM-KONZERVATÍV ANYAGOKRA
TRANSZPORTEGYENLET NEM-KONZERVATÍV ANYAGOKRA Források és nyelők vannak az áramlási térben Kémiai, biokémiai, fizikai átalakulások történnek Nem konzervatív szennyező: reakciókinetikai tag ( R(C) ) Figyelembe vétele lineáris közelítéssel történik: dC/dt = ±  · C, ahol  a reakciókinetikai tényező (rendszerint elsőrendű kinetika) 1D egyenlet ebben az esetben: Több szennyező egymásra hatása: C1,C2, .. C n számú egyenlet!

19 Következő órán számítási példák! Mindenki hozzon számológépet!


Letölteni ppt "Transzportfolyamatok II. 3. előadás"

Hasonló előadás


Google Hirdetések