Előadást letölteni
Az előadás letöltése folymat van. Kérjük, várjon
KiadtaViktor Kovács Megváltozta több, mint 10 éve
1
B-SEJT DIFFERENCIÁCIÓ A PERIFÉRIÁN SZOMATIKUS HIPERMUTÁCIÓ
Ag Ag Ag Memória B-sejt Aktivált B-sejt SZOMATIKUS HIPERMUTÁCIÓ érett naiv B-sejt IZOTÍPUS VÁLTÁS
2
Potenciális B-sejt készlet
CSONTVELŐ Saját struktúra Saját felismerés Klonális deléció PERIFÉRIÁS NYIROKSZERVEK Hozzáférhető B-sejt készlet Antigén - idegen Antigén függő Klonális osztódás Effektor sejt készlet Memória sejt készlet
3
Az immunoglobulinok molekuláris genetikája
Hogyan tud az ugyanolyan specificitású ellenanyag szekretált és membrán kötött formában megjelenni? MEMBRÁN ÉS SZEKRETÁLT IMMUNOGLOBULIN Hogyan képes egy adott specificitású ellenanyag egymást követően változtatni a C régió kifejeződésén? IZOTÍPUS VÁLTÁS Hogyan képesek az ellenanyagok növeli az antigénhez történő affinitásukat az immunválasz előrehaladtával? SZOMATIKUS HIPERMUTÁCIÓ
4
A MEMBRÁN ÉS SZEKRETÁLT IMMUNOGLOBULIN KÉPZŐDÉSE
5
A KONSTANS RÉGIÓT EXON SZAKASZOK KÓDOLJÁK
Primer RNS átirat AAAAA Cm Cm1 Cm2 Cm3 Cm4 A H lánc egyes doménjeit külön exonok kódolják Szekretoros szakaszt kódoló szekvencia pA szekretált pA membrán Membrán szakaszt kódoló szekvencia
6
Membrán IgM konstant régió
Cm1 Cm2 Cm3 Cm4 DNS Transcription Cm1 Cm2 Cm3 Cm4 1° átirat pAm AAAAA Hasítás, poly-adeniláció pAm helyen és RNS hasítás Cm1 Cm2 Cm3 Cm4 AAAAA mRNS A membrán kódoló szekvencia a transzmembrán régió révén biztosítja a sejtfelszíni expressziót Fc Fehérje
7
Szecernált IgM konstans régió
Cm1 Cm2 Cm3 Cm4 DNS h Cleavage polyadenylation at pAs and RNA splicing 1° átirat pAs Cm1 Cm2 Cm3 Cm4 Átírás AAAAA h mRNA Cm1 Cm2 Cm3 Cm4 AAAAA h A szekréciós szakaszt kódoló szekvencia az oldott fehérje C-terminális szakaszának szintéziséért felelős Fc Protein
8
IZOTÍPUS VÁLTÁS
9
Az ellenanyag izotípus váltás
Az immunválasz során egy ellenanyag specificitása (VDJ és VJ) nem változik (az affinitás érés során változhat az affinitása) Az ellenanyagok effektor funkciói az immunválasz során jelentősen változnak Az ellenanyagok képesek a variábilis domén megtartása mellett más konstans régióra váltani, ami más effektor funkciókra teszi képessé az molekulát J regions Ca2 Ce Cg4 Cg2 Ca1 Cg1 Cg3 Cd Cm Az emberi nehéz lánc gének C régióinak sorrendje, ami meghatározza az izotípus váltás lehetőségeit
10
Ig IZOTÍPUSOK Cµ IgM Cγ1 IgG Cγ2 IgG Cγ3 IgG Cγ4 IgG Cα IgA Cε IgE IgM
C Cδ C3 C1 Cε2 C1 C 2 C4 Cε1 C2 C Cδ C Cδ Ig IZOTÍPUSOK Cµ IgM Cγ1 IgG Cγ2 IgG Cγ3 IgG Cγ4 IgG Cα IgA Cε IgE C Cδ C C IgM
11
Minden izotípus rekombináció produktív
C Cδ C2 C4 C C Átrendezett DNS IgM-termelő sejt Switch regiók C Cδ, C2, C4 ISOTÍPUS VÁLTÁS Minden izotípus rekombináció produktív Más szignál szekvenciák és enzimek mint a VDJ átrendeződésnél Antigén stimuláció után Nem véletlenszerű Külső jelek irányítják C C Átrendezett DNS IgE-termelő sejt Első RNA átirat C mRNS Hiper IgM szindróma 2. típus Activation Induced Cytidine Deaminase RNS editing enzim NINCS HIPERMUTÁCIÓ ÉS IZOTÍPUS VÁLTÁS nehéz lánc
12
Switch régiók Ca2 Ce Cg4 Cg2 Ca1 Cg1 Cg3 Cd Cm
Sg3 Sg1 Sa1 Sg2 Sg4 Se Sa2 Sm A C-régiók előtt a DNS-ben ismétlődő szekvenciákból álló „switch” régiók helyezkednek el. (Kivétel a Cd régió) Az Sm 150 [(GAGCT)n(GGGGGT)] ismétlődő szakaszból áll (n=3 – 7) Az izotípus váltás mechanikusan sok vonatkozásban hasonló a V(D)J recombinációhoz, DE Minden rekombinációs esemény produktív Más rekombinációs szignál szekvenciák és enzimek közvetítik A B sejt antigén-specifikus aktivációjától függ Nem véletlenszerű folyamat, mert külső szignálok mint pl. a T sejtek által termelt citokinek befolyásolják Az izotípus váltás az antigénnel való találkozást követően, az aktivált T- sejtek által termelt citokinek segítségével a perifériás nyirokszervekben megy végbe
13
Switch rekombináció Ca2 Ce Cg4 Cg2 Ca1 Cg1 Cg3 Cd Cm V23D5J4 V23D5J4
Sg3 Cm Cd Cg3 V23D5J4 Cg1 Sg1 Ca1 Cm Cd Cg3 V23D5J4 Cg3 V23D5J4 Ca1 Cg3 V23D5J4 IgG3 termelés IgM IgG3 V23D5J4 Ca1 IgA1 termelés IgG3 IgA1 V23D5J4 Ca1 IgA1 termelés IgM IgA1 Minden rekombinációnál a konstans régiók kivágódnak A génsorrend miatt egy IgE – termelő B sejt már nem tud IgM, IgD, IgG1-4 vagy IgA1 termelésre váltani
14
IMMUNOGLOBULIN OSZTÁLY VÁLTÁS REKOMBINÁCIÓVAL
AID (Activation Induced (citidin) Deaminase C →U, RNS editing enzim) elindítja a switch rekombinációt UNG (uracil DNA glycosylase) kivágja az U → bázis mentes vég, AP-endonuleáz/liáz → egyszálú hasítás (nick) Hiba az Ig osztály váltásban - Hiper IgM szindróma, 2 típus, emberben autoszomális
15
HYPER IgM Szindróma (Autoszómális)
- Intrinsic B sejt hiba, az activation induced deaiminase (AID) hiánya okozza, ami a cytidine – uridine reakciót katalizálja - Az enzim szerepet játszik az affinitás érés és az izotípus váltás szabályozásában
16
SZOMATIKUS HIPERMUTÁCIÓ
17
VL CDR1 CDR2 CDR3 Complementary Determining Region = hipervariábilis régió
18
A VARIÁBILIS RÉGIÓ SZERKEZETE - VH
Hipervariábilis (HVR) vagy komplementaritást meghatározó régiók (CDR) és váz (framework/FR) szakaszok HVR3 FR1 FR2 FR3 FR4 HVR1 HVR2 Variabilitás Index 25 75 50 100 Amino savak sorszáma N – C terminális 150 V régió DJ régió Kapcsolási sokféleség
19
Szomatikus hipermutáció
Variabilitás FR1 CDR1 FR2 CDR2 FR3 CDR3 FR4 100 80 60 40 20 20 40 60 80 100 120 Aminosav szám A különböző specificitású ellenanyagokban található pont mutációk összehasonlítása Wu - Kabat analízissel Mik a következményei az immunválasz során végbemenő mutációknak egy adott epitóp ellen irányuló ellenanyagban? Hogyan befolyásolja az ellenanyag specificitását és affinitását?
20
SZOMATIKUS HIPERMUTÁCIÓ
21
SZOMATIKUS HIPERMUTÁCIÓ
0. nap Ag Plazmasejt klónok 1 2 3 4 5 6 7 8 ELSŐDLEGES I.V. AFFINITY MATURATION 9 1011 12 13 14 15 16 14. nap Ag 17 1819 20 21 22 23 24 MÁSODLAGOS I.V.
22
A hipermutációs folyamat aktivált T limfociták közreműködését igényli
A szomatikus hipermutáció affinitás éréshez vezet Clone 1 Clone 2 Clone 3 Clone 4 Clone 5 Clone 6 Clone 7 Clone 8 Clone 9 Clone 10 CDR1 CDR2 CDR3 6. nap CDR1 CDR2 CDR3 8. nap 12. nap 18. nap Hátrányos mutáció Előnyös mutáció Semleges mutáció Kisebb affinitás – Nincs klonális szelekció Nagyobb affinitás – Klonális szelekció Azonos affinitás – Nem hat a klonális delécióra A hipermutációs folyamat aktivált T limfociták közreműködését igényli A mutáció ‘hot spots’ (CDR régiók) körül halmozódnak, amit a kettős láncú töréseket követő hiba javító DNS repair enzim állít helyre
23
CDR2 H CDR1 CDR3 Antigén determináns CDR1 CDR3 CDR2 L A CDR1 és a CDR2 régiókat a V-gének kódolják A könnyűlánc CDR3 régióját a V és J gének kódolják A nehézlánc CDR3 régióját a V, D és J gének kódolják
24
A hipervariábilis és váz szekvenciák szerepe
A vázszekvenciák stabilizálják a hipervariábilis hurkokat A váz kompakt, hidrofób maggal rendelkező hordó alakú b lemezes szerkezetet alakít ki A hipervariábilis hurkok rugalmasabbak mint a b lemezek és térszerkezeti egységet alkotnak A hipervariábilis hurkok szekvenciája a különböző specificitású ellenanyagok között nagyon sokféle A hipervariábilis hurkok aminosav szekvenciája meghatározza az ellenanyag kötőhely alakját, hidrofób jellegét és töltés viszonyait A hipervariábilis hurkok sokfélesége biztosítja a sokféle antigénnel reagálni képes ellenanyag készlet sokféleségét
25
(HOL ÉS HOGYAN TÖRTÉNIK?)
B-SEJT AKTIVÁCIÓ (HOL ÉS HOGYAN TÖRTÉNIK?)
26
PROLIFERÁCIÓ/DIFFERENCIÁCIÓ
A B-sejt aktiváció fő lépései AKTIVÁCIÓ PROLIFERÁCIÓ/DIFFERENCIÁCIÓ FELISMERÉS Ea termelés Klonális szaporodás Segítő T Izotípus váltás Affinitás érés Memória B sejt
27
A B-sejtek recirkulációja antigén hiányában
(nyirokcsomó) B sejt a vérben T sejtes terület B sejtes terület Efferens/kivezető nyirokér
28
A keringő B sejteket az antigének tartják vissza a limfoid szervekben
B sejtek a HEV-en keresztül a nyirokcsomóba jutnak B sejtek gyors prolife- rációja Antigen az afferens/bevezető nyirokéren át a nyirokcsomóba jut Y B sejtek elhagyják a germinális centrumot és plazmasejtté differenciálódnak GERMINÁLIS CENTRUM Átmeneti struktúra, gyors proliferáció
29
„Nagy találkozás” a perifériás nyirokszervekben
Az antigént kötő B sejtek a T-sejt területen akadnak fenn Az antigént kötő B sejtek az aktivált T-sejtekkel lépnek kapcsolatba
30
A germinális centrum szerkezete
Szomatikus hypermutáció LZ FDC DZ Szomatikus hypermutáció LZ: világos zóna DZ: sötét zóna FDC: follikuláris dendritikus sejt
31
A B sejtek az FDC felszínén ismerik fel az antigént
Az antigén a follikuláris dendritikus sejtek (FDC) felszínéhez kötődik (FDC) Az FDC-ek immun komplexeket kötnek (Ag-Ab) Az antigén ingert követően 12 hónappal is kimutatható az FDC-ek felszínén Egyetlen sejt sokféle antigént köthet This concept is being challenged now, and there has been some backtracking in the current text. It is possible that the FDCs provide persistent Ag to long-lived plasma cells. Az FDC felszínén az immunkomplexek un. iccosomákat képeznek, melyek leválhatnak és utána a környező GC B sejtek felveszik őket A B sejtek az FDC felszínén ismerik fel az antigént
32
T SEJT FÜGGŐ B SEJT AKTIVÁCIÓ A LIMFOD SZERVEKBEN
IgM Naiv B sejt Nem mutált plazma sejt Antigén Th sejt Szomatikusan mutált plasma sejt IgG IgA IgE B sejt blaszt Csíraközpont B sejt Memória B sejt
33
SIGNALING UNITS OF THE B-CELL RECEPTOR
Ig-a/CD79a a b Y Ig-b/CD79b Ig domain + CHO ITAM ITAM: YxxL x7 YxxI ITAM: Immunoreceptor Tyrosine-based Activation Motif
34
A szignál transzdukció lépései B-sejtekben
Membrán Ig keresztkötése Ag által Tirozin foszforiláció Biokémiai intermedierek Transzkripciós faktorok Aktív enzimek
35
A B-sejt receptor keresztkötés következményei
Ag kötés, a felszíni Ig keresztkötése Limfocita aktiváció Fenotípus/funkció változás Fokozott túlélés Osztódás Ko-stimuláló molekulák kifejeződése Citokin receptorok kifejeződése Kivándorlás a limfoid tüszőből a T sejtes területekre
36
A LIMFOCITA AKTIVÁLÁS KINETIKÁJA, KÖVETKEZMÉNYEI
ANTIGÉN 1. JEL Nyugvó limfocita G0 sejtosztódás DNS szintézis Effektor sejt Memória sejt Transzport folyamatok Membrán változás RNS és fehérje szintézis Ko-receptor Adhéziós molekula Citokinek 2. JEL Nyugvó limfocita G0 PTK aktiváció RNS szintézis Szabad Ca Fehérje szintézis Fehérje foszforiláció DNS szintézis Limfoblaszt 0 10sec 1min 5min óra óra óra óra
37
Antigén determináns C3d A CR2 (CD21) KOMPLEMENT RECEPTOR A B – LIMFOCITÁKON KO-STIMULÁLÓ SZEREPET TÖLT BE ANTIGÉN CR2/CD21 CD19 Y TAPA=CD81 Fokozott B-sejt aktiválás B-SEJT
38
Sziálsav, glikokonjugátumok, T sejt CD45
A B-SEJT RECEPTORON ÁT KÖZVETÍTETT JELET A CD22 NEURAMINSAV RECEPTOR GÁTOLJA Testi sejtek Baktérium Mannóz Sziálsav, glikokonjugátumok, T sejt CD45 B-SEJT Antigén CD22 ITIM/ITAM
39
Ellenanyagokkal és komplement faktorokkal opszonizált Epstein Barr Virus (EBV) elektromikrográfiás képe Negativ festésű EBV Ellenanyagokkal és komplement komponensekkel körbevett EBV Ellenanyagokkal körbevett EBV
40
A KÖTŐHELY SAJÁTSÁGAI AZ ANTIGÉN ÉS ELLENANYAG KAPCSOLÓDÁST
MÉRET ALAK HIDROFÓB HIDROFIL POSITÍV TÖLTÉSŰ NEGATÍV TÖLTÉSŰ AZ ANTIGÉN ÉS ELLENANYAG KAPCSOLÓDÁST NEM-KOVALENS KÖLCSÖNHATÁSOK BIZTOSÍTJÁK Egy kötőhely több antigént is köthet A kötés affinitása/aviditása széles tartományban változik
41
Növekedési faktorok Adhéziós molekulák MHC – peptid - TCR Adhéziós molekulák ELLENANYAGOK Kötés erősség
42
A B – SEJT DIFFERENCIÁCIÓT A T-SEJTEK SEGÍTIK
ANTIGÉN CITOKINEK PLAZMA SEJT IZOTÍPUS VÁLTÁS ÉS AFFINITÁS ÉRÉS CSAK T-SEJT SEGÍTSÉGGEL MEGY VÉGBE HOGYAN LÁTJÁK A T-SEJTEK AZ ANTIGÉNT?
Hasonló előadás
© 2024 SlidePlayer.hu Inc.
All rights reserved.