Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Hőtan.

Hasonló előadás


Az előadások a következő témára: "Hőtan."— Előadás másolata:

1 Hőtan

2 Mozgások Rendezetlen, véletlenszerű mozgás Rendezett mozgások
-haladó: szabadesés, hajítás -kör -rezgő -forgó -hullám -haladó+forgó -áramlások: turbulens, lamináris Vízben oldott részecske mozgása (Brown: pollen)

3 A Brown mozgás magyarázata
Einstein, 1905: -A folyadék atomokból áll -Az atomok állandó mozgásban vannak

4 Kinetikus gázmodell A kinetikus gázmodell a gázok (ritka gázok) tapasztalható viselkedését (nyomás, térfogat, hőmérséklet, keveredés, stb) magyarázza mikroszkópikus feltevésekkel. Feltevések: A gáz nagyon sok molekulából áll, ezek között a távolság méreteikhez képest nagy A molekulák véletlenszerűen mozognak, állandó sebességeloszlással A molekulák rugalmasan ütköznek egymással és az edény falával, egyébként nem hatnak egymásra Az egyes molekulák Newton törvényei szerint mozognak Sok alkotórész mozog, az egyes alkotórészeket nem lehet nyomon követni: statisztikus leírás lehetséges

5 Valószínűségi sűrűség függvény
pont Diákok sorszáma A hisztogramm vízszintes tengelyén a lehetséges értékek (pontok) egy felosztása áll: 0-2, 3-5,6-8,9-11 stb A függőleges tengely azt mutatja, hogy hány olyan eredmény született, ami az adott tartományba esett. (0-2 11db, db, stb) Átlag: 14 pont

6 Egy másik csoport eredménye
Az átlagos pontszám ugyancsak 14, de láthatóan más az eredmények eloszlása. A valószínűségi sűrűségi függvény az eredmények eloszlását adja meg.

7 Egy fizikai mennyiség sűrűségfüggvényének/eloszlásának két pont közötti integrálja egyenlő/arányos annak a valószínűségével, hogy a fizikai mennyiség értéke a két pont közötti tartományba esik. A hisztogrammból is becsülhető ez a valószínűség.

8 Általában milyen sebességgel mozognak a részecskék a gázban?
Ugyanaz a hőmérséklet, más tömeg. Maxwell – Boltzmann sebességeloszlás A hőmérséklet növekedésével a maximum eltolódik, az eloszlás kiszélesedik

9 M – móltömeg kg/mól R - egyetemes gázállandó Egy molekula átlagos mozgási energiája T hőmérsékleten: 1.5*k*T Gázkeverékekben a sebességek nem, az átlagos mozgási energiák kiegyenlítődnek: Az energia egyenletesen oszlik el. Az átlagos sebesség 100m/s nagyságrendű szobahőmérsékleten

10 Az ideális gáztörvény n = number of moles
R = universal gas constant = J/mol K N = number of molecules k = Boltzmann constant = x J/K = x 10-5 eV/K k = R/NA NA = Avogadro's number = x 1023 /mol

11 Az ideális gáz belső energiája
Van-e mozgási energiája az álló lufinak? A benne lévő gáz részecskéinek a mozása: Belső enegia Termodinamika első főtétele: A gáz belső energiájának megváltozását úgy kell kiszámolni, hogy a gázzal közölt hő (melegítés) –ből ki kell vonni a gáz által végzett munkát.

12 Hő: rendezetlen energia, amit egy test kap vagy elveszít, ha egy nála melegebb vagy hidegebb testhez ér. (energia egyenletes eloszlása) Munka: Erő és elmozdulás szükséges hozzá. A gázzal melegítés révén közölt hő. A gázon végzett munka. Ennek éppen ellentettje a gáz által végzett munka. A térfogatváltozás előjele fontos!

13 Milyen könnyű felmelegíteni a gázt?
A szükséges hő a fajhő, a tömeg és a hőmérsékletváltozás szorzata. A gázokat állandó nyomáson nehezebb felmelegíteni a tágulás során végzett munka miatt mint állandó térfogaton. C_v=1.5*R C_p=R+C_v


Letölteni ppt "Hőtan."

Hasonló előadás


Google Hirdetések