Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

5. GÁZLÉZEREK Lézeranyag: kis nyomású (0,1 - 760 Torr) gáz, vagy gázelegy Lézerátmenet: elektronszintek között (UV és látható lézerek) rezgési szintek.

Hasonló előadás


Az előadások a következő témára: "5. GÁZLÉZEREK Lézeranyag: kis nyomású (0,1 - 760 Torr) gáz, vagy gázelegy Lézerátmenet: elektronszintek között (UV és látható lézerek) rezgési szintek."— Előadás másolata:

1 5. GÁZLÉZEREK Lézeranyag: kis nyomású (0,1 - 760 Torr) gáz, vagy gázelegy Lézerátmenet: elektronszintek között (UV és látható lézerek) rezgési szintek között (infravörös lézerek) forgási szintek között (távoli infravörös lézerek) Pumpálás: elektromos energiával, gázkisülést létrehozva (optikai pumpálásnak nincs értelme, mert a gázok abszorpciós vonalai keskenyek) Méret: sokkal nagyobbak a szilárdtestlézereknél, mivel kisebb a lézeraktív anyag koncentrációja. Például: He-Ne lézer ~ 10 21 molekula/m 3 Nd-YAG lézer ~ 10 25 - 10 26 Nd-ion/m 3

2 Hélium-neon lézer Lézeranyag: ~10:1 arányú He/Ne elegy, össznyomás ~1 torr A lézerátmenet a Ne atomoktól származik, a He segédanyag

3 A Ne elektronkonfigurációi és állapotai A Ne a 10. elem Alapállapotú konfiguráció: 1s 2 2s 2 2p 6 Gerjesztett konfigurációk: 1s 2 2s 2 2p 5 3s 1 1s 2 2s 2 2p 5 4s 1 1s 2 2s 2 2p 5 5s 1 1s 2 2s 2 2p 5 3p 1 1s 2 2s 2 2p 5 4p 1 4-4 állapot 10-10 állapot

4 A hélium és a neon energiaszintdiagramja

5 Nitrogénlézer Lézeranyag: ~0,2 bar nyomású N 2 gáz A N 2 alapállapota szingulett (S=0) A gázkisülésben ütközéssel sokféle gerjesztett elektronállapot jöhet létre: - szingulett (S=0) gerjesztett és - triplett (S=1) gerjesztett állapotú molekulák keletkeznek. A lézerátmenet a N 2 két triplett állapota között történik.

6 A molekulapályák betöltése az N 2, alapállapotában (X) és két triplett gerjesztett állapotában (B,C)

7 Az N 2 molekula lézerátmenete

8 A nitrogénlézer felépítése

9 Excimerlézerek Excimer = excited dimer Olyan dimer, amely gerjesztett elektronállapotban stabil, de alapállapotban nem. Pl. Xe 2 molekula Exciplex = excited complex Olyan komplex, amely gerjesztett állapotban stabil, de alapállapotban nem. Nemesgázok halogénekkel képeznek ilyen komplexet. Az excimerek és exciplexek stabilitásának oka: a gerjesztett állapot részlegesen ionos jellegű, a halogénatom részben átvesz egy elektront a nemesgáztól.

10 Excimer/exciplex molekula energiaszint-diagramja

11 Excimerlézerek hullámhossza Xe 2 ? XeF 157 nm ArF193 nm KrF248 nm KrCl222 nm XeCl308 nm XeBr282 nm

12 Az excimerlézerek alkalmazásai Jellemző tulajdonságok: - Az UV-tartományban működnek - Viszonylag széles tartományban hangolhatók - Impulzusüzeműek - Energiájuk nagyobb a N 2 -lézernél Alkalmazások: rétegek megmunkálása UV-fénnyel fotokémiai kísérletek

13 Technikai szempontok A gázelegyet a fluor korróziós hatását kibíró csőbe kell tölteni: fémcső perfluorozott műanyag bevonattal Felületek megmunkálása: a hullámhossz csökkenésével javul az optikai felbontás, ebből a szempontból XeF lézer a legjobb, ezt követi az ArF, majd KrF. Az elérhető működési frekvencia és az impulzusonkénti energia sorrendje fordított.

14 Argonlézer Lézer közeg: ~0,5 torr nyomású Ar-gáz, kisülési csőbe töltve Kisülésben- gerjesztett molekulák - alapállapotú ionok jönnek létre (plazma) - különböző gerj. áll. ionok A kisülési cső működési jellemzői: áramerősség, feszültség, nyomás, hőmérséklet - ezektől függ az Ar + ionok populációja különböző energiaszinteken. Inverz populáció érhető el az Ar + ion egyes gerjesztett állapotaiban, náluk kisebb energiájú gerjesztett állapotokhoz képest. } A lézersugárzás az Ar + ionoktól származik! („Argonion”lézer)

15 Az Ar a 18. elem. Ar-atom konfigurációja: 1s 2 2s 2 2p 6 3s 2 3p 6 Ar + -ion legkisebb energiájú konfigurációja: 1s 2 2s 2 2p 6 3s 2 3p 5

16 Argonlézer energiaszint-diagramja

17 Argon-lézer felépítése

18 CO 2 -lézer Lézer közeg: ~ 1:1 arányú CO 2 -N 2 elegy zárt változat: - ~10 torr nyomású gáz zárt kisülési csőben nyitott változat - ~ atmoszférikus nyomású gáz nyílt kisülési csőben A lézer átmenet a CO 2 -molekula gerjesztett rezgési állapotai között történik, ezért infravörös fényt ad. A N 2 segédanyag.

19 A CO 2 -molekula normál rezgései szimmetrikus nyújtásdeformációaszimmetrikus nyújtás v 1 v 2 v 3 A három normálrezgés gerjesztettségét jellemző kvantumszámok.

20 A CO 2 és a N 2 rezgési-forgási szintjei

21 Előny: Az elektromos energiát nagy hatásfokkal (10-20 %) infravörös fénnyé alakítja. - folytonos és impulzus üzemmódú lézer is készíthető - a folytonos üzemmódú ~100 kW energiájú fényt is adhat Felhasználás: fémmegmunkálás sebészet spektroszkópiában plazmák előállítása

22 Lézerplazma távolról

23 Lézerplazma közelről

24 Plazmaspektrum 1.

25 Plazmaspektrum 2.

26


Letölteni ppt "5. GÁZLÉZEREK Lézeranyag: kis nyomású (0,1 - 760 Torr) gáz, vagy gázelegy Lézerátmenet: elektronszintek között (UV és látható lézerek) rezgési szintek."

Hasonló előadás


Google Hirdetések