Előadást letölteni
Az előadás letöltése folymat van. Kérjük, várjon
1
Regresszióanalízis 10. gyakorlat
2
Korrelációanalízisben a kérdés:
milyen szoros és milyen irányú kapcsolat áll fenn a változók között (szoros kapcsolat összefüggést jelez) A két változó egyenrangú Regresszióanalízisben a kérdések: van-e összefüggés a változók között az egyik változó megváltozásával milyen irányba és mennyit változik a másik változó A változók viszonyát nem tekintjük egyenrangúak: feltételezzük, hogy a valóságban oksági kapcsolat van közöttük Megjegyzendő, hogy a változók közötti tényleges oksági kapcsolatot a regresszióanalízis önmagában nem bizonyítja, az csupán az adataink közötti statisztikai kapcsolat feltárására alkalmas.
3
Y függő változó és X független vagy magyarázó változó → egyszerű regressziós modell X1, X2,…,Xp független vagy magyarázó változók → többszörös regressziós modell A regresszióanalízis feladata tehát egy függvényszerű kapcsolat keresése egy függő és egy vagy több folytonos magyarázó változó között.
4
A lineáris regressziós modell
egyszerű regressziós modell Yi a függő változó értéke az i-dik mintavételi objektumon Xi a magyarázó változó értéke az i-dik mintavételi objektumon εi az i-dik objektumhoz tartozó véletlen eseti hiba, ún. reziduális érték. Az ε hibatag a modell szerint 0 várható értékű és szig2 szórású normál eloszlást követ. α és β az alapsokaságbeli ismeretlen és fix értékűnek tekintett paraméterek, vagy regressziós koefficiensek. α jelentése: az alapsokaságra vonatkozó y tengely metszet; megmutatja, hogy mekkora lenne Y értéke abban a hipotetikus esetben, amikor X=0 β jelentése: az alapsokaságra vonatkozó meredekség; megmutatja, hogy hányszorosára és milyen irányba változik Y ha X egy egységgel nő
5
többszörös regressziós modell
βj együtthatókat itt parciális regressziós koefficienseknek hívjuk. Egy adott j magyarázó változóhoz tartozó βj együttható megmutatja, hogy hányszorosára és milyen irányba változik Y ha az XJ magyarázó egy egységgel nő, miközben a többi magyarázó változó az átlagaiknak megfelelő konstans értéken van.
6
A modellkészítés folyamata
Olykor bonyolult dolog, különösen többszörös regresszió esetén; szakmai megfontolásokat és tapasztalatot igényel. A főbb lépések: Alapsokaságból mintavétel → modellillesztés az adatokra A modell validálása: annak ellenőrzése, hogy az illesztett modell megfelel-e a lineáris regresszió feltételezéseinek Ha a modellünk megfelel az alkalmazhatósági feltételeknek, akkor teszteljük a modellt, hogy választ kapjunk vajon van-e összefüggés a függő változó és a magyarázó változó között Leírjuk a modellt függvényszerű formában
7
A paraméterek becslése
Az ún. legkisebbb négyzetek módszerével történik.
8
A lineáris regressziós modell feltételezései – alkalmazhatósági feltételek
Normalitás: minden egyes X értékre, a lehetséges Y értékek megfigyelése normál eloszlású Homogenitás: az egyes X értékekre a normál eloszlás azonos varianciájú
10
A magyarázó változó(k) értéke determinisztikus (fixed X), azaz a kutató állítja be, hogy milyen X értékek mellett vizsgálja Y-t Függetlenség: Egy adott Xi értékhez tartozó Yi érték nagysága nem függ egy másik Xi értékhez tartozó Y érték nagyságától (mintavételi objektumok függetlensége)
11
Hipotézisvizsgálatok
F-próba a magyarázott variabilitás vizsgálatára – a modell általános tesztje A függő változó eltérésnégyzet-összeggel (Sum of Squares) kifejezett teljes variabilitása (SStotal) additív felbontása: (p, n-p-1) szabadsági fokok n – mintanagyság p – magyarázó változók száma Az SSregression és SSerror tagból képezhető F próbastatisztika, ami (p, n-p-1) szabadsági fokok szerinti F-eloszlást követ:
12
H0 az egyszerű regressziós modellben: nincs összefüggés Y és X között
H0 az egyszerű regressziós modellben: nincs összefüggés Y és X között. Grafikusan azt jelenti, hogy a pontokra illesztett egyenes a vízszintes tengellyel párhuzamos: béta = 0. H1: beta != 0 H0 a többszörös regressziós modellben: a függőváltozó egyik magyarázó változótól sem függ, azaz betai = 0 minden i-re (i = 1, 2, …, p). H1: van olyan magyarázó változó a modellben, amely összefügg Y-al, vagyis betai != 0 legalább egy i-re.
14
t-próba a magyarázó változók vizsgálatára – a béta együtthatók egyenkénti tesztelése H0 az egyszerű regressziós modellben: nincs összefüggés Y és X között. a független változó regressziós együtthatója nulla, azaz beta = 0 H1: a meredekség nem nulla, vagyis: beta != H0 a többszörös regressziós modellben: az adott magyarázó változó regressziós együtthatója nulla: betai = 0 (i = 1,2,…,p) H1: az adott magyarázó változó regressziós együtthatója eltér nullától, azaz betai != 0 (i = 1,2,…,p). Student-féle t-eloszlás (n-p-1) szabadsági fokkal
15
Egyszerű modellben (egy magyarázó változó esetén) az F-próba és a magyarázó változó meredekségére vonatkozó t-próba azonos.
Hasonló előadás
© 2024 SlidePlayer.hu Inc.
All rights reserved.