Előadást letölteni
Az előadás letöltése folymat van. Kérjük, várjon
KiadtaPál Illés Megváltozta több, mint 10 éve
1
1 Györgyi Tamás – GYTNAAI.ELTE 2007 Április 03 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus Bellman-Ford Algoritmusa S a b d e 6 -2 8 7 -4 2 7 -3 5 9
2
2 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus A Bellman-Ford algoritmus az i-edik iterációban minden csúcshoz (kivéve kezdő csúcsot), megtalálja a minimális költségű, legfeljebb i hosszúságú utat. Negatív élköltségek is lehetségesek a gráfban. Feltétel hogy a gráf nem tartalmazhat negatív kört! A gráf éleit (n-1) szer tetszőleges sorrendbe kell bejárni.
3
3 Bellman-Ford (G, s) d[u]:=∞; π[u]:=Nil; Üres(KÉSZ); Üres(minQ); Feltölt(minQ) for all (u,v) Є E for all u Є V \ {s} Algoritmusok És Adatszerkezetek 2 d[s]:=0; π[s]:=Nil; for i=1 to n-1 d[u]+c(u,v) < d[v] d[v]:=d[u]+c(u,v); π[v]:=u; skip
4
4 A Bellman-Ford Algoritmusa működésének szemléltetése egy gráfon: Algoritmusok És Adatszerkezetek 2 S a b c d e 6 -2 8 7 -4 2 7 -3 5 - Így néz ki az irányított gráfom: 9 S – Start csúcs
5
5 A Bellman-Ford Algoritmusa működésének szemléltetése egy gráfon: Algoritmusok És Adatszerkezetek 2 0 S ∞ ∞ ∞ ∞ a b c d e 6 -2 8 7 -4 2 7 -3 5 1. lépés 9
6
6 A Bellman-Ford Algoritmusa működésének szemléltetése egy gráfon: Algoritmusok És Adatszerkezetek 2 0 S 6 7 ∞ ∞ a b c d e 6 -2 8 7 -4 2 7 -3 5 2. lépés 9
7
7 A Bellman-Ford Algoritmusa működésének szemléltetése egy gráfon: Algoritmusok És Adatszerkezetek 2 0 S 6 7 4 2 a b c d e 6 -2 8 7 -4 2 7 -3 5 3. lépés 9
8
8 A Bellman-Ford Algoritmusa működésének szemléltetése egy gráfon: Algoritmusok És Adatszerkezetek 2 0 S 2 7 4 2 a b c d e 6 -2 8 7 -4 2 7 -3 5 4. lépés 9
9
9 A Bellman-Ford Algoritmusa működésének szemléltetése egy gráfon: Algoritmusok És Adatszerkezetek 2 0 S 2 7 4 2 a b c d e 6 -2 8 7 -4 2 7 -3 5 5. lépés 9
10
10 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus Vége Györgyi Tamás – GYTNAAI.ELTE 2007 Április 03 Bellman-Ford Algoritmusa
Hasonló előadás
© 2024 SlidePlayer.hu Inc.
All rights reserved.