Előadást letölteni
Az előadás letöltése folymat van. Kérjük, várjon
KiadtaRebeka Fábiánné Megváltozta több, mint 10 éve
1
A biológiai óra modellje
2
Enright modellje I. Az SCN sejtek szinkronizálására dolgozta ki, de általánosítható kellő számú megbízhatatlan elemből pontos óra idegsejtek leírására használt formalizmusból indul ki: kisülés – ezt követő helyreállítás , míg az érzékenység nem éri el a random excitáció szintjét sokféle egyenletet írtak le, de ez kevésbé fontos, mert valószínűségi eloszlásokkal operál a rendszernek nincs emlékezete az előző ciklusról szóló kisülések helyett on/off állapot jellemzi a pacemakereket a pacemakerek (N) egy diszkriminátorhoz vannak kapcsolva – ha az aktív pacemakerek száma meghaladja a küszöböt (Θ = 0.3N), akkor az aktiválódik (ez az óra kimenete) ugyanakkor pozitív feedback-et ad a pacemakereknek
3
Enright modellje II. teljes periódus helyreállás (x) aktivitás (y) mean(x i ) = mean(x) + β*z i,β mean(x) = 17 óra, β = 3 óra i-ik oszcillátor várható x értéke ± 2*SD i-ik oszcillátor x értéke a j-ik ciklusban x i,j = mean(x i ) + α*z i,α pl. mean(x) = 21 óra, α = 2,5 óra ± 2*SD összességében igen tág határok között változhat az x i,j 17 ± 11 óra az aktivitás (y) hosszát a relaxációhoz (x) köti a modell y i,j = δ i *x i,j ahol δ i = mean(δ) + γ*z i,γ mean(δ) = 1/2 óra, γ = 1/8 szélső értékek
4
Enright modellje III. idő 1/4 órás felbontásban, normális eloszlás ±6- szoros szórásnál csonkolva feltételes valószínűség: ha eddig nem aktiválódott a pacemaker, milyen valószínűséggel aktiválódik most – monoton növekvő függvény minden ciklusban egyenletes eloszlású valószínűségi változó számítása – ha a feltételes valószínűség ennél nagyobb, aktiválódott a pacemaker a feedback úgy hat, mintha már több idő telt volna el – valószínűségi eloszlás görbe eltolása ε = 8 órával ha a diszkriminátor aktivitási periódusa alatt az oszcillátor nem aktiválódik, akkor a hatás elvész ha egy oszcillátor aktiválódott, akkor addig nem foglalkozik vele, míg le nem jár az aktiválódás hossza
5
A modellezés eredményei I. a diszkriminátor onset-je sokkal kisebb szórást mutat, mint az offset a periódusidő szórása: –N = 100 pacemaker – 64 perc –N = 800 pacemaker – 22 perc –N = 28000 pacemaker – 3 perc – ez felel meg a tapasztaltnak az α, β, γ paramétereket igen nagyvonalúan határozta meg – az elsőt felére, a többit harmadára csökkentve, már 1600 pacemaker biztosítja a pontosságot a modell igen stabil a fény hatása (Aschoff és cirkadian szabály) csak a Θ-t változtathatja – a többi paraméter vagy nem befolyásolja a periódusidőt (α, β, γ, ε, N), vagy azonos irányban változnának (x, mean(δ)), ami ütközne a cirkadian szabállyal
6
A modellezés eredményei II. fel kell tételeznünk, hogy a fény éjszakai állatokban növeli, nappaliakban csökkenti a Θ-t ez logikus is, hiszen a diszkriminátor aktiválódása az aktivitási szakaszt jelzi, az pedig ellentétesen változik a fénnyel a modell jól visszaadja a várt hatásokat extrém Θ értékeknél megszűnik a visszacsatolás és a rendszer ritmikus aktivitása a természetes megvilágítás 4*10 -5 és 10 5 között változik, az SCN sejtek küszöbe 10 (hörcsög), illetve 0.1 (patkány) lux, de 500 lux felett már nem nő a válasz a tartomány a hajnal és alkony sávjának felel meg a madarak LL 100 lux felett aciklikussá válnak (alvás, testhőmérséklet), DD-ben egy részük inaktívvá válik és elpusztul
7
A modellezés eredményei III. a rágcsálók közül a nappaliak nem lesznek aritmikusak LL-ben, és az éjszakaiak se DD-ben fel kell tételezni, hogy a küszöb változása telítésbe megy – az éjszakaiak üregben alszanak, – enélkül sohase tudnának elaludni a modell jól visszaadja, hogy a periódusidő változása a fénnyel max. 4-5 óra lehet alkalmazkodás LD-hez éjszakai rágcsálók: –ha a szabadonfutó periódusidő hosszabb 24 óránál – aktivitás leállása esik egybe a fénnyel , az aktivitás kezdete órákat késhet –ha a szabadonfutó periódusidő rövidebb 24 óránál, az aktivitás azonnal indul a sötétséggel, az aktivitás leállása jóval a fény előtt –a modell mindezt jól visszaadja
8
A modellezés eredményei IV. a nappali madarak sok mindenben eltérnek –aktivitás a fény felkapcsolása előtt indul –a fény hatására mindig aktívak (20 óráig is), az éjszakaiak max. 10-12 órát 20 óra sötétből –a fény bármikor aktiválja őket, nem így a sötét az éjszakai állatokat – LL-ben aritmiássá válnak – ezt jól visszaadja a modell –fényciklus változtatása: azonnali hatás nappaliakban, elnyújtott átállás éjszakaiakban – ezt már nem tükrözi jól a modell a rövid fényimpulzusok hatását sem tükrözi egyértelműen jól a modell előny: így legalább látni, hol kell korlátozni a paramétereket
9
A modell továbbfejlesztése továbbfejlesztés: lecsengő oszcillátorok a pacemaker kimenetének amplitúdója is van: mértani sor szerint csökken visszacsatolás nélkül 1, k, k 2, stb. – ha 1 órán belül aktiválódik a pacemaker a diszkriminátor aktiválódása után – amplitúdó helyreáll igen jól működik k=0,5-ig, ott már lecseng valószínűbb a 4-5 ciklusig fennmaradó oszcilláció, mint a korlátlanul futó két, sorbakapcsolt aluláteresztő szűrő is létre tudja hozni – könnyen elképzelhető a létezése a cirkadian ritmusok lecsengése és újraindíthatósága is alátámasztja – azonnal újraindul a ritmus, ami az oszcillátorok lecsengését és nem deszinkronizációját sugallja
10
- - - - - - - - - - -
11
Spontán neuronális aktivitás modelljei
12
Az óra pacemaker modellje
13
Diszkriminátor – pacemaker kölcsönhatás
14
Pacemaker szám és pontosság
15
A modell stabilitása
16
A fény hatása a diszkriminátorra
17
Szinkronizáció rövid nappallal hörcsög LD5:19 repülő mókus LD6:18
18
Szinkronizáció a modellben mean(x) = 17,5 óra mean(x) = 16 óra
19
A modell továbbfejlesztése
Hasonló előadás
© 2024 SlidePlayer.hu Inc.
All rights reserved.