Előadást letölteni
Az előadás letöltése folymat van. Kérjük, várjon
KiadtaVeronika Székely Megváltozta több, mint 5 éve
1
Földrajzi összefüggések elemzése: sztochasztikus módszerek
dr. Jeney László egyetemi docens Regionális elemzések módszerei III. Szociológia alapszak, regionális és településfejlesztés specializáció; Minden alapszak 2017/2018, II. félév BCE GGF Intézet Gazdaságföldrajz és Jövőkutatás Központ
2
Társadalmi jelenségek együttmozgása
Földrajzi összefüggések elemzése: sztochasztikus módszerek Tagoltság vizsgálata: szinte sohasem szűkül le egy-egy jelenség (mutatószám) térbeli eloszlásának elemzésére Már a fajlagos adatok egyenlőtlenségeinek mérésekor is 2 jelenséget kapcsolunk össze Térbeli együttmozgások elemzése: kifejezetten területi kölcsönhatások (néha ok-okozati kapcsolatok) is megjelennek Összefüggések mérése: korreláció- és regressziószámítás Erősség: milyen erős az összefüggés Irány: egyenes (+) vagy fordított (–) arányosság 2
3
Szignifikancia Megbízható (szignifikáns) összefüggés: ha viszonylag nagy elemszámú mintából, hosszú adatsorból számítjuk Erős szignifikancia: megfigyelési egységek körét véletlenszerűen újabbakkal bővítve, nagy valószínűséggel nem változik az összefüggés iránya és szorossága Meghatározza: Elemszám (1000 vagy 10 területi egységre mérünk) Kapcsolat szorossági szintje (korreláció absz. 0,9 vagy 0) Szignifikancia-tesztek: pl. SPSS 3
4
Korreláció 4
5
Korreláció Jelzőszámok közötti kapcsolat szorosságának meghatározására szolgáló eljárás (egyfajta sajátos egyenlőtlenségi mutató Egy mutatószámmal (r): korrelációs együttható Korreláció típusai területi elemzésekben Lineáris korreláció azonos megfigyelési egységekre vonatkozó két adatsor között Autokorreláció Keresztkorreláció Ugyanígy lehet autoregresszió és keresztregresszió is Értékkészlete: –1 ≤ r ≤ 1 Mértékegysége nincs Súlyozás problémája a korrelációszámításban 5
6
A korrelációs-együtthatók értékeinek értelmezése
r értéke kapcsolat jellege r = 1 Lineáris függvénykapcsolat, egyenes arányosság van a két jellemző között 0,7 ≤ r < 1 Szoros kapcsolat, egyirányú együttmozgás 0,3 ≤ r < 0,7 Közepes erősségű kapcsolat, egyirányú együttmozgás 0 < r < 0,3 Gyenge kapcsolat, egyirányú együttmozgás r = 0 Nincs lineáris kapcsolat, a két jellemző korrelálatlan –0,3 < r < 0 Gyenge kapcsolat, ellentétes irányú együttmozgás –0,7 < r ≤ –0,3 Közepes erősségű kapcsolat, ellentétes irányú együttmozgás –1 < r ≤ –0,7 Szoros kapcsolat, ellentétes irányú együttmozgás r = –1 Lineáris függvénykapcsolat, fordított arányosság van a két jellemző között 6
7
Lineáris korreláció Lineáris korreláció azonos megfigyelési egységekre vonatkozó két adatsor között r = corr (xi; yi) Egyfajta sajátos egyenlőtlenségi mutató Legismertebb: Pearson-féle lineáris korrelációs együttható Excel fx= KORREL() Angol nyelvű Excel fx= CORREL() Spearman-féle rangkorreláció Ordinális (sorrendi) adatskála esetén di: összetartozó rangszámok különbségei 7
8
Korrelációs mátrix hagyományos útja
f(x) függvényvarázsló segítségével számítható A mátrixban szereplő adatsorok egymás mellé rendezése úgy, hogy üres oszlop és egyéb adat ne legyen benne Mátrix keretének elkészítése: a fejléc átmásolása vízszintesen és függőlegesen, a bal fölső cella üres) Minden sorból egy korrelációs együttható kiszámítása, a sorban állandó jelzőszám tömbjének betűjeli lerögzítendők ($) (További egyszerűsítés is végezhető, de teljesen automatikusan nem lehet kitölteni minden cellát!) Ellenőrzés: átlóban 1-esek szerepelnek, a mátrix az átlóra szimmetrikus 8
9
Korrelációs mátrix automatikus útja
File menüpont / Beállítások / Bővítmények / Analysis ToolPack kiválasztása (előtte legyen pipa) / OK Adatok menüpont / Adatelemzés / Korrelációanalízis / OK Korrelációanalízis ablak Bemeneti tartomány: oszlopok kijelölése (kivéve régiónevek) / Feliratok az első sorban kiválasztása (előtte legyen pipa) / Kimeneti beállítások: Új munkalapra kiválasztása (előtte legyen kijelölve) 9
10
Regresszió-elemzés 10
11
Regressziószámítás a regionális elemzésekben
Változókapcsolatokat valószínűségi (sztochasztikus) függvénykapcsolatként értelmezi Függő és független (vagy magyarázó) változók Független: x tengely, fajlagos mutató nevezője, bal oszlop Függő: y tengely, fajlagos mutató számlálója, jobb oszlop Típusai: Lineáris vagy nem lineáris Két- vagy többváltozós Alkalmas becslésre, előrejelzésre 11
12
Kétváltozós lineáris regresszió
y = a + bx x: magyarázó (független) változó b: regressziós együttható (regressziós koefficiens): az egyenes meredekségét vagy dőlését jelöli (az x értékének egységnyi növekedése y értékének mekkora mértékű és milyen irányú változását vonja maga után a: regressziós állandó (konstans): értéke megegyezik az egyenes y tengelyen tapasztalt metszéspontjával (a értéke egyenlő y értékével x = 0 helyen) y: a függő változó regressziós egyenlet alapján becsült értéke Determinációs együttható (R2) itt a Pearson-féle lineáris korrelációs együttható négyzete 12
13
Kétváltozós lineáris regresszó számítása Excelben
A két adatsor egymás mellé rendezése úgy, hogy a bal oldalon az x tengelyre kerülő változó legyen. Szórásdiagram készítése (pontdiagram) Formázási műveletek Jobb klikk valamely pontra: trendvonal felvétele Egyenlet és r négyzet látszik Számítás 13
14
Kétváltozós lineáris regressziós összefüggések
14
15
Nem lineáris összefüggések
Nem lineáris regressziós egyenletek alaptípusai Logaritmikus: y = a + (b * lnx) Polinomiális: y = a + (b1 * x) + (b2 * x2) + … + (bn * xn) Exponenciális y = a * bx Hiperbolikus y = a + b / x Hatványkitevős y = a * xb Determináció együttható (R2)dönti el, melyik írja le legjobban az adott összefüggést Azt a trendvonaltípust érdemes választani, amelynél magasabb az R2 értéke Elemzésük és értelmezésük nehézkesebb, mint a lineáris egyenleteké Idősorok elemzésénél, trendszámításban gyakrabban használják mint a területi adatok keresztmetszeti vizsgálatában 15
Hasonló előadás
© 2024 SlidePlayer.hu Inc.
All rights reserved.