Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Dr. Varga Beatrix egy. docens

Hasonló előadás


Az előadások a következő témára: "Dr. Varga Beatrix egy. docens"— Előadás másolata:

1 Dr. Varga Beatrix egy. docens
Hipotézisvizsgálat Dr. Varga Beatrix egy. docens A. Rodin: A gondolkodó

2 A hipotézisvizsgálat alkalmazása I.
Van egy eldöntendő kérdés: Az egyetemi hallgatók IQ-ja nagyobb-e az átlagosnál? Hatásos-e a reklámtevékenység? A sokasági eloszlás normális? Az átlagos várakozási idő több negyed óránál?

3 A hipotézisvizsgálat alkalmazása II.
Felállítunk válaszként egy állítást: nagyobb ↔ nem nagyobb hatásos ↔ nem hatásos normálisnak tekinthető ↔ nem tekinthető normálisnak negyed óránál több ↔ nem több

4 A hipotézisvizsgálat alkalmazása III.
Vizsgálat, kísérletek „A” állítást elfogadom, tehát „B”-t elutasítom Döntés: „A” állítást elutasítom, tehát „B”-t elfogadom

5 Alapfogalmak I. Hipotézisvizsgálat célja: Hipotézis:
A sokaságra vonatkozó valamely állítás helyességének ellenőrzése a mintából származó információk alapján Hipotézis: A sokaságra vonatkozó állítás, feltételezés Statisztikai próba: (döntési szabály) A hipotézisvizsgáló eljárás

6 Alapfogalmak II. Nullhipotézis H0 Alternatív hipotézis H1
Aminek az elfogadásáról, ill. vissza- utasításáról döntünk. Alternatív hipotézis H1 A nullhipotézissel egymást kizáró állítások.

7 Hipotézisvizsgálat során elkövethető hibák
A minta alapján A valóságban H0 igaz H0 nem igaz elfogadjuk H0 -t Helyes döntés 1 -  Másodfajú hiba elvetjük H0 -t Elsőfajú hiba

8 Szignifikanciaszint: α
az elsőfajú hiba elkövetésének kockázata megadja, hogy következtetésünk mekkora valószínűséggel érvényes csökkentése szűkíti a visszautasítási tartományt, növeli az elfogadási tartományt, növeli a másodfajú hiba esélyét

9 A statisztikai próba kiválasztása
A változók szerint paraméteres nem paraméteres Egy ismert eloszlás valamely paraméterére vonatkozó állítás. Egy ismeretlen eloszlás típusára vonatkozó állítás Az ismert eloszlás leggyakrabban a normális eloszlás

10 A hipotézis vizsgálat lépései
A nullhipotézis H0 és az alternatív hipotézis H1 felállítása A próbafüggvény kiválasztása, és aktuális értékének meghatározása a minta a lapján. A szignifikanciaszint megválasztása A próbafüggvény kritikus értékének meghatározása az eloszlástáblázatból. A visszautasítási és elfogadási tartomány meghatározása. Döntéshozatal

11 Paraméteres hipotézisvizsgálatok
I. Egymintás próbák

12 Hipotézis vizsgálat Null hipotézis: H0 :  = 0 Alternatív hipotézis:
  0   0 Kétoldalú próba Egyoldalú próba

13 Várható értékre vonatkozó hipotézisvizsgálat
H0 : μ = m0 1.) alapsokaság normál eloszlású, σ ismert mintanagyság tetszőleges 2.) alapsokaság normál eloszlású, σ nem ismert, n  100 3.) σ nem ismert, n  100, alapsokaság tetszőleges eloszlású A Z-test is any statistical test for which the distribution of the test statistic under the null hypothesis can be approximated by a normal distribution. Due to the central limit theorem, many test statistics are approximately normally distributed for large samples. Therefore, many statistical tests can be performed as approximate Z-tests if the sample size is not too small. In addition, some statistical tests, such as comparisons of means between two samples, or a comparison of the mean of one sample to a given constant, are exact Z-tests under certain assumptions. Student’s t-test: It is most commonly applied when the test statistic would follow a normal distribution if the value of a scaling term in the test statistic were known. When the scaling term is unknown and is replaced by an estimate based on the data, the test statistic (under certain conditions) follows a Student's t distribution.

14 Critical values in the case of Large sample
Critical values in the case of Large sample Critical values in the case of Small sample

15 Arányra vonatkozó hipotézisvizsgálat
H0 : P = P Feltétel: nagy minta! Szórásra vonatkozó hipotézisvizsgálat H0 : σ = σ Feltétel: normál eloszlás!

16 Critical values of χ2-test

17 A csomagok töltési tömege (g)
Példa 1. Egy 250 g kávét csomagoló gép működésének ellenőrzéséhez 100 elemű véletlen mintát vettek. Korábbi felmérések alapján feltételezhetjük, hogy a töltőtömeg normális eloszlást követ. A csomagok töltési tömege (g) A csomagok száma (db) – 239,9 8 240 – 244,9 22 245 – 249,9 32 250 – 254,9 28 255 – 10 Összesen 100

18 a) Elfogadható-e a minta alapján, hogy az átlagos töltőtömeg 250g ( = 1 %)
b) Elfogadható-e a minta alapján, hogy az átlagos töltőtömeg kisebb, mint 250g ( = 1 %) c) Elfogadható-e a minta alapján, hogy a 250g-nál kisebb töltőtömegű csomagok aránya eléri a 60%-ot? d) Elfogadható-e a minta alapján, hogy a töltőtömeg szórása nagyobb 5g-nál? e) Milyen szignifikancia-szinten fogadható el, hogy a töltőtömeg szórása nagyobb 5g-nál? f) Elfogadható-e a minta alapján, hogy a töltőtömeg szórása legfeljebb 5g?

19 x (x) 0,00 0,5000 0,52 0,6985 1,04 0,8508 1,56 0,9406 2,40 0,9918 0,02 0,5080 0,54 0,7054 1,06 0,8554 1,58 0,9429 2,50 0,9938 0,04 0,5160 0,56 0,7123 1,08 0,8599 1,60 0,9452 2,60 0,9953 0,06 0,5239 0,58 0,7190 1,10 0,8643 1,62 0,9474 2,70 0,9965 0,08 0,5319 0,60 0,7257 1,12 0,8686 1,64 0,9495 2,80 0,9974 0,10 0,5398 0,62 0,7324 1,14 0,8729 1,66 0,9515 2,90 0,9981 0,12 0,5478 0,64 0,7389 1,16 0,8770 1,68 0,9535 3,00 0,9987 0,14 0,5557 0,66 0,7454 1,18 0,8810 1,70 0,9554 3,20 0,9993 0,16 0,5636 0,68 0,7517 1,20 0,8849 1,72 0,9572 3,40 0,9996 0,18 0,5714 0,70 0,7580 1,22 0,8888 1,74 0,9591 3,60 0,9998 0,20 0,5793 0,72 0,7642 1,24 0,8925 1,76 0,9608 3,8 0,9999 0,22 0,5871 0,74 0,7703 1,26 0,8962 1,78 0,9625 z-test 0,24 0,5948 0,76 0,7764 1,28 0,8997 1,80 0,9641 0,26 0,6026 0,78 0,7823 1,30 0,9032 1,82 0,9656 0,28 0,6103 0,80 0,7881 1,32 0,9066 1,84 0,9671 0,30 0,6179 0,82 0,7939 1,34 0,9099 1,86 0,9686 0,32 0,6255 0,84 0,7995 1,36 0,9131 1,88 0,9699 0,34 0,6331 0,86 0,8051 1,38 0,9162 1,90 0,9713 0,36 0,6406 0,88 0,8106 1,40 0,9192 1,92 0,9726 0,38 0,6480 0,90 0,8159 1,42 0,9222 1,94 0,9748 0,40 0,6554 0,92 0,8212 1,44 0,9251 1,96 0,9750 0,42 0,6628 0,94 0,8264 1,46 0,9279 1,98 0,9761 0,44 0,6700 0,96 0,8315 1,48 0,9306 2,00 0,9772 0,46 0,6772 0,98 0,8365 1,50 0,9332 2,10 0,9821 0,48 0,6844 1,00 0,8413 1,52 0,9357 2,20 0,9861 0,50 0,6915 1,02 0,8461 1,54 0,9382 2,30 0,9893

20 Student’s t-test Df 0,55 0,60 0,70 0,75 0,80 0,90 0,95 0,975 0,99 0,995 1 0,158 0,325 0,727 1,000 1,376 3,08 6,31 12,71 31,82 63,66 2 0,142 0,289 0,617 0,816 1,061 1,89 2,92 4,30 6,96 9,92 3 0,137 0,277 0,584 0,765 0,978 1,64 2,35 3,18 4,54 5,84 4 0,134 0,271 0,569 0,741 0,941 1,53 2,13 2,78 3,75 4,60 5 0,132 0,267 0,559 0,920 1,48 2,02 2,57 3,36 4,03 6 0,131 0,265 0,553 0,718 0,906 1,44 1,94 2,45 3,14 3,71 7 0,130 0,263 0,549 0,711 0,896 1,42 1,90 2,36 3,00 3,50 8 0,262 0,546 0,706 0,889 1,40 1,86 2,31 2,90 9 0,129 0,261 0,543 0,703 0,883 1,38 1,83 2,26 2,82 3,25 10 0,260 0,542 0,700 0,879 1,37 1,81 2,23 2,76 3,17 11 0,540 0,697 0,876 1,36 1,80 2,20 2,72 3,11 12 0,128 0,259 0,539 0,695 0,873 1,78 2,18 2,68 3,06 13 0,538 0,694 0,870 1,35 1,77 2,16 2,65 3,01 14 0,258 0,537 0,692 0,868 1,34 1,76 2,14 2,62 2,98 15 0,536 0,691 0,866 1,75 2,60 2,95 16 0,535 0,690 0,865 2,12 2,58 17 0,257 0,534 0,689 0,863 1,33 1,74 2,11 18 0,127 0,688 0,862 1,73 2,10 2,55 2,88 19 0,533 0,861 2,09 2,54 2,86 20 0,687 0,860 1,32 1,72 2,53 2,84 21 0,532 0,686 0,859 2,08 2,52 2,83 22 0,256 0,858 2,07 2,51 23 0,685 1,71 2,50 2,81 24 0,531 0,857 2,06 2,49 2,80 25 0,684 0,856 2,48 2,79 26 27 0,855 1,31 1,70 2,05 2,47 2,77 28 0,530 0,683 29 0,854 2,04 2,46 30 2,75 40 0,126 0,255 0,529 0,681 0,851 1,30 1,68 2,42 2,70 60 0,254 0,527 0,679 0,848 1,67 2,00 2,39 2,66 120 0,526 0,677 0,845 1,29 1,66 1,98 0,253 0,524 0,674 0,842 1,28 1,645 1,96 2,33

21 χ2 Df 0,005 0,01 0,025 0,05 0,10 0,25 0,50 0,75 0,90 0,95 0,975 0,99 0,995 1 0,0000 0,0002 0,0010 0,039 0,0158 0,102 0,455 1,32 2,71 3,84 5,02 6,63 7,88 2 0,0100 0,0201 0,0506 0,103 0,211 0,575 1,39 2,77 4,61 5,99 7,38 9,21 10,6 3 0,072 0,115 0,216 0,352 0,584 1,21 2,37 4,11 6,25 7,81 9,35 11,3 12,8 4 0,207 0,297 0,484 0,711 1,06 1,92 3,36 5,39 7,78 9,49 11,1 13,3 14,9 5 0,412 0,554 0,831 1,15 1,61 2,67 4,35 9,24 15,1 16,7 6 0,676 0,872 1,24 1,64 2,20 3,45 5,35 7,84 12,6 14,4 16,8 18,5 7 0,989 1,69 2,17 2,83 4,25 6,35 9,04 12,0 14,1 16,0 20,3 8 1,34 1,65 2,18 2,73 3,49 5,07 7,34 10,2 13,4 15,5 17,5 20,1 22,0 9 1,73 2,09 2,70 3,33 4,17 5,90 8,34 11,4 14,7 16,9 19,0 21,7 23,6 10 2,16 2,56 3,25 3,94 4,87 6,74 9,34 12,5 18,3 20,5 23,2 25,2 11 2,60 3,05 3,82 4,57 5,58 7,58 10,3 13,7 17,3 19,7 21,9 24,7 26,8 12 3,07 3,57 4,40 5,23 6,30 8,44 14,8 21,0 23,3 26,2 28,3 13 5,01 5,89 7,04 9,30 12,3 19,8 22,4 27,7 29,8 14 4,07 4,66 5,63 6,57 7,79 17,1 21,1 23,7 26,1 29,1 31,3 15 4,60 6,26 7,26 8,55 11,0 14,3 18,2 22,3 25,0 27,5 30,6 32,8 16 5,14 5,81 6,91 7,96 9,31 11,9 15,3 19,4 23,5 26,3 28,8 32,0 34,3 17 5,70 6,41 7,56 8,67 10,1 16,3 24,8 27,6 30,2 33,4 35,7 18 7,01 8,23 9,39 10,9 21,6 26,0 28,9 31,5 34,8 37,2 19 6,84 7,63 8,91 11,7 14,6 22,7 27,2 30,1 32,9 36,2 38,6 20 7,43 8,26 9,59 12,4 19,3 23,8 28,4 31,4 34,2 37,6 40,0 21 8,03 8,90 11,6 13,2 24,9 29,6 32,7 35,5 38,9 41,4 22 8,64 9,54 14,0 17,2 21,3 30,8 33,9 36,8 40,3 42,8 23 9,26 13,1 18,1 27,1 35,2 38,1 41,6 44,2 24 9,89 13,8 15,7 28,2 33,2 36,4 39,4 43,0 45,6 25 10,5 11,5 16,5 19,9 24,3 29,3 34,4 37,7 40,6 44,3 46,9 26 11,2 12,2 15,4 20,8 25,3 30,4 35,6 41,9 48,3 27 11,8 12,9 16,2 36,7 40,1 43,2 47,0 49,6 28 13,6 18,9 27,3 32,6 37,9 41,3 44,5 51,0 29 17,7 33,7 39,1 42,6 45,7 52,3 30 15,0 20,6 24,5 43,8 50,9 53,7 40 20,7 22,2 24,4 26,5 39,3 51,8 55,8 59,3 63,7 66,8 50 28,0 29,7 32,4 42,9 49,3 56,3 63,2 67,5 71,4 76,2 79,5 60 37,5 40,5 46,5 67,0 74,4 79,1 83,3 88,4 92,0 70 43,3 45,4 48,8 51,7 55,3 61,7 69,3 77,6 85,5 90,5 95,0 100,4 104,2 80 51,2 53,5 57,2 60,4 64,3 71,1 79,3 88,1 96,6 101,9 106,6 112,3 116,3 90 59,2 61,8 65,6 69,1 73,3 80,6 89,3 98,6 107,6 113,1 118,1 124,1 128,3 100 67,3 70,1 74,2 77,9 82,4 90,1 99,3 109,1 118,5 124,3 129,6 135,8 140,2

22 Köszönöm a figyelmet!


Letölteni ppt "Dr. Varga Beatrix egy. docens"

Hasonló előadás


Google Hirdetések