Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Paraméteres és nem paraméteres próbák alkalmazása több csoport összehasonlítására folytonos változók esetén Dr. Gombos Tímea.

Hasonló előadás


Az előadások a következő témára: "Paraméteres és nem paraméteres próbák alkalmazása több csoport összehasonlítására folytonos változók esetén Dr. Gombos Tímea."— Előadás másolata:

1 Paraméteres és nem paraméteres próbák alkalmazása több csoport összehasonlítására folytonos változók esetén Dr. Gombos Tímea

2 Megválaszolandó kérdések
Különbözik-e egymástól a férfiak és a nők BMI-je? Változik-e a vércukor szint egy gyógyszeres kezelés hatására? Emelkedik-e a koleszterint szint a kor előrehaladtával? Más-e a vérnyomás a különböző stádiumú betegekben? ►Létezik-e (szignifikáns) különbség két vagy több betegcsoport között?

3 Megfelelő statisztikai próba kiválasztása
Hány csoportunk van? 2 3 vagy több Függetlenek a mintáink? független csoportok – nők vs. férfiak, súlyos vs. enyhébb betegek kapcsolt csoportok – ua. kezelés előtt vs. kezelés után, ua. 10 év múlva valamilyen kritérium alapján előre felállított párok Normál eloszlású a minta? normál eloszlás → paraméteres teszt nem normál eloszlás → nem paraméteres teszt

4 Paraméteres Nem paraméteres
Nem normál eloszlás esetén Eloszlásfüggetlen (nem feltételfüggetlen!) Pl.: a próba sorrendbe állítja az összes értéket, a sorszámokkal (rangok) számol Az orvosi gyakorlatban gyakoribb Normál eloszlás (vagy egyéb bizonyos fajta) A próba a tényleges értékekkel számol Az orvosi gyakorlatban viszonylag ritka, de az adatok normál eloszlásúvá transzformálhatóak (pl. logaritmizálás)

5 Normál eloszlásból származik a mintám?
A populáció eloszlása nem ismert, a mintát vizsgálom Hisztogram készítése, normál görbe ráfektetése, szemmel ellenőrzés – kis esetszám? Shapiro-Wilks teszt Ho – az eloszlás normál H1 – az eloszlás eltér a normálistól ► ha a próba szignifikáns, az eloszlás nem normál Bizonytalanság esetén? tekintsük úgy, mintha nem normál eloszlású lenne a mintánk, mert ha normál eloszlású adatokon nem parametrikus tesztet végzünk, gyakorlatilag a parametrikus teszttel azonos eredményt kapunk, míg fordított esetben ez nem áll fent! Hatékonyság vesztés!

6

7 Nem paraméteres próbák
2 minta 3 vagy több Mintaszám? Hány csoport? igen nem igen nem Független minták? Normál eloszlású a minta? igen nem igen nem igen nem igen nem 1 szempontos AVOVA Ismételt méréses ANOVA 2 mintás t-próba Páros t-próba Mann-Whitney t. Wilcoxon t. Kruskal-Wallis t. Friedman próba Paraméteres próbák Nem paraméteres próbák

8 Két mintás t-próba (unpaired T-test)
Feltétele: ismeretlen, de feltételezhetően azonos szórások Két minta átlagát hasonlítja össze – ebből következtetünk a populáció átlagára H0 – a két mintavételi populáció azonos H1’ – az egyik mintavételi populáció nagyobb H1” – az két mintavételi populáció különböző Képlettel számítjuk a t – értéket (minél nagyobb, annál nagyobb eltérésre utal) Táblázatból ismert, hogy adott szabadságfok mellett mekkora p (probability) érték tartozik hozzá Ha a p-érték kellően kicsi – elutasítjuk a H0-t Mi a kellően kicsi? – előre meghatározott érték, a szignifikancia küszöb. Ált. 0,05, vagyis 5%. Ha a p ennél kisebb, mondhatjuk, hogy a két populáció közötti különbség szignifikáns A p-érték annak a valószínűsége, hogy elsőfajú hibát követek el (hibásan utasítom el a H0-t) ► p-érték annak a valószínűsége, hogy mégis igaz a H0

9 Egyoldali vagy két oldali próba (one-tailed, two-tailed)
A kérdés (az alternatív hipotézis) határozza meg melyik szükséges Egyoldali próba – egyirányú eltérést vizsgálok (H1’) pl. az egyik pop. nagyobb Kétoldali próba – kétirányú eltérés (H1”) pl. a két pop. különbözik Melyik a „szigorúbb”? A kétoldali próba! (az ábrán a piros) A STATISTICA eleve kétoldali próbához tartozó p-értéket ad meg. Ha a kérdésfeltevésünk indokolja (lehetővé teszi) az egyoldali próbát, a kapott p-értéket osszuk el kettővel (az ábrán a kék intervallum)

10 A számított statiszika értéke
Elérési útvonal STATISTICA-ban: Statistics // Basic statistics/Tables// t-test, independent, by groups A számított statiszika értéke Degree of freedom, szabadságfok. A két csoport esetszáma -2 A kétoldali próbához tartozó p-érték Megj.: A t-próba akkor végezhető, ha a két csoport varianciája megegyezik. Ha nem vagyunk biztosak a szórások egyenlőségében, akkor Welch próbát kell használni. (F próba ezt vizsgálja, de nem helyes ez alapján választani a próbát)

11 Mann-Whitney teszt Például? – férfiak vagy a nők BMI-je nagyobb?
H0 – nincs különbség a két csoport között

12 Mann-Whitney teszt feltétele
A két folytonos változó sűrűségfüggvénye azonos alakúak (egymásba eltolással átvihetők) Tehát a szórások azonosak!

13 Elérési útvonal: Statistics (felső parancssor) // Nonparametrics //Compairing two independent samples (groups) A próba Ábra készítése

14 Csoporttól függetlenül adott rangszámok csoportösszege
A rangszámösszegből számolt statisztika értéke és a hozzá tartozó p-érték esetszám Ha az egyik csoport minden egyes eleméhez hozzárendeljük a másik csoport minden egyes elemét, akkor a két csoport esetszámainak szorzatával egyenlő számú párt kapunk (144x50=7200db-t). Az U azt mutatja meg, hogy hány ilyen párban nagyobb az első érték, mint a második (+ az egyenlő párok számának a fele). Ha egyforma lenne a HGB a férfiak és a nők között, az U 7200/2=3600 lenne. Mivel az eredményekből csak nehézkesen állapítható meg, hogy melyik csoportban vannak a nagyobb értékek, érdemes grafikusan ábrázolni.

15 Páros t-próba Például? H0 – a különbségek átlaga = 0
Változott-e egy év elteltével a betegek Na szintje (felt. norm. eloszlás) H0 – a különbségek átlaga = 0

16 Elérési útvonal STATISTICA-ban: Statistics // Basic statistics/Tables // t-test, dependent samples
Itt is lehet ábrát kérni!

17 A mintapárok közötti különbségeken alapul a t-értéket meghatározó képlet, de szerepel benne a szórás (SD) is. Jelen esetben a p-érték nagyobb, mint a küszöb érték, a H0-t nem vetjük el, a csoportok között nincs különbség. (Megtévesztő lehet, de akár kis eltérés is lehet szignifikáns, ha az eltérések szórása kicsi. Könnyen belátható, hogy ha pl. 0,5 az átlagos eltérés, de az a 0,4-0,6 tartományba esik, az egy jelentős különbség. Míg abban az esetben, ha ugyancsak 0,5 az eltérések átlaga, de az értékek -1 és 2 között szórnak, akkor nincs tényleges különbség a két csoport között) Megj.: hamis eredményt kaphatunk, ha a két mérés nem azonos módszerrel történik, vagy pl. nem azonos a mértékegység!

18 Wilcoxon próba Például? H0 – a különbségek átlaga = 0
Változott-e egy év elteltével a betegek Na szintje ( nem norm. eloszlás) H0 – a különbségek átlaga = 0

19 Elérési útvonal STATISTICA-ban: Statistics // Nonparametrics // Comparing two dependent samples (variables) A próba előjeltől függetlenül rangsorolja a két minta közötti különbségeket, majd a negatív és a pozitív különbségekhez tartozó rangokkal számol.

20 Egyszempontos ANOVA Például?
Különböznek-e egymástól a más-más NYHA stádiumban lévő szívelégtelen betegek kreatinin szintje? (felt. norm eloszlást)

21 ANOVA ANOVA = Analysis of Variance
Több csoport összehasonlításánál kézenfekvő, de nem helyes a párokat alkotni és azokat t-teszttel összehasonlítani. Ha a csoportok egy szempont szerint különböznek (pl. betegség súlyossága)→ egyszempontos ANOVA több szempontot szerint is vizsgáljuk (pl. betegség súlyossága és nem) → többszempontos ANOVA H0 – mindegyik minta ugyanolyan átlagú sokaságból származik. A csoportokon belüli és a csoportok közötti varianciát elemzi rm

22 Elérési útvonal STATISTICA-ban: Statistics // ANOVA // one-way ANOVA
Osztályozó vagy független változó Függő változó – a mért vagy megfigyelt adatok

23 Ha a teszt szignifikáns eredményt ad, a csoportok közül legalább az egyik nem azonos populációból származik A kísérleti tervtől függően választott elemzéssel meghatározhatjuk, hogy melyik csoport különbözik

24 Kruskal-Wallis próba Például?
Különböznek-e egymástól a más-más NYHA stádiumban lévő szívelégtelen betegek kreatinin szintje? (nem norm eloszlás)

25 Páronkénti össze-hasonlítások eredményei
Median test – a K-W-t „egyszerűbb” változata. Ha sok kiugró érték van, megbízhatóbb Páronkénti össze-hasonlítások eredményei Elérési útvonal STATISTICA-ban: Statistics // Nonparametrics // Comparing multiple indep. samples

26 Friedman próba Például?
Változik-e a koleszterint szint 5 évenként mérve?

27 Elérési útvonal STATISTICA-ban: Statistics // Nonparametrics // Comparing multiple dep. Samples (variables)

28 Általános vizsgálati szempontok
Először fogalmazzuk meg a kérdést, ehhez keressük meg a megfelelő próbát Ne csak a p-értéket nézzük, próbáljunk utánagondolni az eredményeknek (pl. Mann-Whitney tesztnél U). Ábrázoljuk ellenőrzésképpen grafikusan is! Orvosi gyakorlatban leggyakrabban nem paraméteres teszteket használunk A programmal két csoportot könnyen több száz változó szerint is összehasonlíthatunk (szignifikancia vadászat). Ilyenkor ne felejtsük el lejjebb vinni a szignifikancia küszöböt (Bonferroni korrekció). Definícióból adódik, hogy 100 db 0,05 p-értékű tesztnél valószínűleg 5 szignifikáns eltérést mutat még akkor is, ha a két populáció nem különbözik!

29 Összefoglalás folyamatos változók (pl. életkor, se Na)
folyamatos változók (pl. életkor, se Na) normál eloszlású nem normál eloszlású 2 független csoport összehasonlítása két mintás t-próba Mann-Whitney teszt Basic stat./Tables//T test, independent, by groups Nonparametrics//Comparing two independent samples (groups) Szignifikánsan különbözik-e a súlyos és nem súlyos betegek vércukor értéke? 2 kapcsolt csoport összehasonlítása (pl. érték kezelés előtt és kezelés után) páros t próba Wilcoxon teszt Basic stat./Tables//T test dependent samples Nonparametrics//Comparing two dependent samples (variables) Megváltozik-e a betegek fehérvérsejt száma a kezelés hatására? Változik-e a betegek koleszterinszintje 10 év követés alatt? 3 vagy több független csoport összehasonlítása egy szempontos ANOVA Kruskal-Wallis teszt ANOVA//One-way ANOVA//All effects Nonparametrics//Compairing multiple independent samples (groups) Van-e különbség a különböző Dukes stadiumú betegek hemoglobin szintjében? 3 vagy több kapcsolt csoport összehasonlítása ismételt méréses ANOVA Friedman próba ANOVA//Repeated measures ANOVA Nonparametrics//Compairing multiple dependent samples (groups) Az ismételt mérések során változik-e a betegek BMI-je?

30 Köszönöm a figyelmet!


Letölteni ppt "Paraméteres és nem paraméteres próbák alkalmazása több csoport összehasonlítására folytonos változók esetén Dr. Gombos Tímea."

Hasonló előadás


Google Hirdetések