Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

IV.2. Hozam számtani és mértani átlaga

Hasonló előadás


Az előadások a következő témára: "IV.2. Hozam számtani és mértani átlaga"— Előadás másolata:

1 IV.2. Hozam számtani és mértani átlaga
19 IV.2. Hozam számtani és mértani átlaga A diszkrét időpontokban mért árfolyamokat így modellezzük (amennyiben a két mért időpont alatti növekedési ütemet állandónak tekintjük): „Átlagos” P T 2016. ősz Befektetések

2 20 A folytonos hozam használatának kezdeti nehézségei később visszatérülnek. A hozamok így egyszerűen összeadhatók. 12 részidőszakból álló adathalmazunk van t1, t2, …, t12 P0, P1, P2, …, P12 r1, r2, …, r12 (logaritmikusan számolt) Ekkor a 12 részidőszak alatti összes növekedés, illetve az időszaki (folytonos kamatozással számított) átlagos hozam a következők szerint adódik: 2016. ősz Befektetések

3 20 Amennyiben a t1, t2, …, t12 időszakok megegyeznek (pl. napok, hónapok, évek stb.), akkor az átlagos hozam számítása még egyszerűbb: „sima átlag” 2016. ősz Befektetések

4 Most nézzük a számtani és a mértani átlag kérdését!
20 Most nézzük a számtani és a mértani átlag kérdését! Számtani átlag Mértani átlag „Növekedések átlaga” – „Átlagos növekedés” 2016. ősz Befektetések

5 21 Nézzük az első példát! P0=100 részvény az 1. periódus végén 200, a 2. periódus végén ismét 100. A diszkrét hozamok: Nézzük a diszkrét számtani és a mértani átlagot: A ténylegest a mértani hozam mutatja helyesen. 2016. ősz Befektetések

6 Számítsuk ki a folyamatos hozamokat:
21 Számítsuk ki a folyamatos hozamokat: Nézzük a folyamatos számtani és a „mértani” átlagot: Folyamatosnál a két átlag megegyezik és „helyes”. 2016. ősz Befektetések

7 Tekintsük a második példát!
21 Tekintsük a második példát! P0=100, P1=50, P2=75, P3=37,5 és P4=56,25 2016. ősz Befektetések

8 Miért térnek el az átlagértékek?
22 Miért térnek el az átlagértékek? Kezdjük a két diszkrét változat eltérésével! A számtani átlag időátlagolású hozam. Ennél nem foglalkoztunk azzal, hogy melyik hozam mellett éppen mekkora alapösszeg növekedett. A mértani átlag összegsúlyozású hozam. Ennél a növekedéseket súlyozzuk az időszak kezdetén jelentkező összeggel. Most nézzük a diszkrét és a folyamatos eltérését! A folyamatos kamatozás végtelen kis időszakokra osztja a teljes időszakot, és így számítja a növekedéseket. A diszkrét valójában közelítése a folytonosnak. Minél kisebbek a diszkrétnél vett intervallumok, annál pontosabb. 2016. ősz Befektetések

9 22 A diszkrét számtani mindig felülbecsli a tényleges eredményt. Ezt az okozza, hogy ugyanazon %-os változás felfelé kevésbé emeli a kisebb értékeket, mint lefelé csökkenti a nagyobbakat. „Megduplázódik” (100%) – „Lefeleződik” (-50%) Mindezek után nem meglepő, hogy a számtani „hibája” a részhozamok szórásával (szórásnégyzetével) lesz arányos: 2016. ősz Befektetések

10 23 Az első példánál a számtani átlag 25% volt, míg a mértani, illetve a folyamatos 0%. A másodok példánál a számtani átlag 0% volt, a mértani -13,4%, a folyamatos -14,4%. 2016. ősz Befektetések

11 IV.3. Átlagos és várható hozam
23 IV.3. Átlagos és várható hozam A befektetések világában a diszkrét és a folyamatos kamatozás, és mindkét átlagszámítás ismerete is szükséges. A befektetések „jövőbeli” várható hozamának becslését is („jobb híján”) a múltbeli eredményesség vizsgálataira építik. Tőkepiaci befektetéseknél viszonylag stabil hozamú folyamatokat tételezhetünk fel. Erre a kérdésre még részletesebben is kitérünk. Röviden, a várható hozamokat a múltbeli hozamok átlagértékei alapján adjuk meg. 2016. ősz Befektetések

12 23-24 Bár a mértani átlag a múltbeli eredményesség jobb mérőszáma, így kézenfekvőnek tűnik, hogy a jövőbeli várható „pénztermelő-képesség” becslésére is ezt használjuk. Azonban nem ilyen egyszerű a helyzet. Rövidebb távú várható hozamra (mondjuk egy hónapra, egy évre) ugyanis a számtani átlag adja a matematikailag korrektebb közelítést. 2016. ősz Befektetések

13 IV.4. Állandó várható hozam feltételezése
24 IV.4. Állandó várható hozam feltételezése Korábbi példáinknál a (folyamatos) árfolyamleírást használtuk. Ez jó akkor, ha a hozam fix, azonban az árfolyam legtöbbször véletlenszerűen változik. Sztochasztikus folyamatok. Időben és változójában is folytonos sztochasztikus folyamattal közelítünk, bár egyik feltétel sem teljesül maradéktalanul. 2016. ősz Befektetések

14 25 Gondoljunk az árfolyamokkal kapcsolatos tanulmányainkra! (Üzleti gazdaságtan) A befektetők a befektetések (piaci) kockázatától függő hozamelvárások mellett fektetnek be. A piaci várható hozamok is ezekhez a hozamelvárásokhoz igazodnak. Minden pillanatban akkora az ár, hogy az ár és a jövőbeli várható jövedelmek viszonya éppen a kockázatához illő elvárt hozamot adja. Árfolyamváltozás: változik jövőbeli jövedelmekkel kapcsolatos várakozás, mialatt nem változik a kockázat, ezzel együtt az elvárt hozam sem. Egy befektetés várható hozama tehát állandó! 2016. ősz Befektetések

15 E(r) β rf 2016. ősz Befektetések

16 Most gondolkodjunk el a tőzsdei (tőkepiaci) árazódás intenzitásának kérdésein!
(A témára még részletesebben is visszatérünk majd.) Nézzünk előbb egy-két adatot az új információk beépítési gyorsaságáról, pontosságáról! 2016. ősz Befektetések

17 „Kétség kívül” előrejelezhetetlen események.
21 db között megesett „rossz hír” Zátonyra futott olajszállító tanker (Exxon) Repülőgép-szerencsétlenségek (United Airlines, USAir) Üzemrobbanások (Texaco, Quantum Chemical, ARCO) Igazgató, elnök váratlan halála (McClatchy Newspapers, Gillette). Tőzsdei nyitva tartás alatti 6 db Tőzsdei nyitva tartáson kívüli 15 db 2016. ősz Befektetések

18 Tőzsdei nyitva tartás alatti események
- 5 10 15 20 98,5 102,5 100,0 97,0 Árfolyam Idő percekben Tőzsdei nyitva tartás alatti események Tőzsdei nyitva tartáson kívüli események 2016. ősz Befektetések

19 Általánosságban megállapíthatjuk, hogy a tőzsdéken az új információk beépítésének sebessége és pontossága igen nagy. Az árazás alapja, hogy a pillanatnyi ár éppen akkora várható hozamot biztosítson, amekkora a vállalt kockázatért jár. 2016. ősz Befektetések

20 Normál hozam Abnormális hozam Várható hozam t 1 E ( r ) β P P 1
f β i Normál hozam Abnormális hozam Várható hozam t P P 1 2016. ősz Befektetések

21 Új információk, véletlenszerűség
árfolyam Új információk, véletlenszerűség múlt jelen idő jövő 2016. ősz Befektetések

22 Mivel a kockázatosság állandó, így a várható hozam is állandó.
24 A befektetők tehát a befektetések kockázatától függő adott hozamelvárások mellett fektetnek be. A piaci várható hozamok is ezekhez a hozamelvárásokhoz kell igazodjanak. Azaz, minden pillanatban akkora az ár, hogy az ár és a jövőbeli várható jövedelmek viszonya éppen a kockázatához illő elvárt hozamot adja. Mivel a kockázatosság állandó, így a várható hozam is állandó. A jövőbeli jövedelmekkel kapcsolatos várakozás folyamatosan változik (mialatt a kockázat állandó), erre reagál az árfolyam. 2016. ősz Befektetések

23 Mekkora az éves és féléves diszkrét, illetve folyamatos kamatozással számolt hozama annak az értékpapírnak, amelynek árfolyam T=4 év alatt P0=100-ról PT=200-ra emelkedik? 2016. ősz Befektetések

24 Az alábbi árfolyamadatú értékpapír esetén mekkora az éves növekedések átlaga, illetve az átlagos éves növekedés diszkrét kamatozás mellett? P0=100; P1=110,517; P2=90,484; P3=105,127; P4=122,14 2016. ősz Befektetések

25 Az alábbi árfolyamadatú értékpapír esetén mekkora az éves növekedések átlaga, illetve az átlagos éves növekedés folytonos kamatozás mellett? P0=100; P1=110,517; P2=90,484; P3=105,127; P4=122,14 2016. ősz Befektetések


Letölteni ppt "IV.2. Hozam számtani és mértani átlaga"

Hasonló előadás


Google Hirdetések