Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Főbb szerkezetkutató módszerek

Hasonló előadás


Az előadások a következő témára: "Főbb szerkezetkutató módszerek"— Előadás másolata:

1 Főbb szerkezetkutató módszerek
MOLEKULASPEKTROSZKÓPIAI MÓDSZEREK Mágneses magrezonancia-spektroszkópia (NMR) Elektronspinrezonancia-spektroszkópia (ESR) Magkvadrupólusrezonancia-spektroszkópia (NQR) Forgási (mikrohullámú, MW) spektroszkópia Rezgési spektroszkópia (IR és Raman) Elektrongerjesztési (UV-Vis) spektroszkópia UV Fotoelektronspektroszkópia (UPS) Mössbauer-spektroszkópia TÖMEGSPEKTROMETRIA (MS) DIFFRAKCIÓS MÓDSZEREK Röntgen-diffrakció (Gáz) elektron-diffrakció (GED) Neutron-diffrakció KVANTUMKÉMIAI SZÁMÍTÁSOK Szemiempirikus Sűrűségfunkcionál elmélet (DFT) Ab initio (HF és elektronkorrelációs módszerek) ELEMANALÍZIS KONDENZÁLT ANYAGOK és FELÜLETEK VIZSGÁLATA Röntgen fotoelektron-sp. (XPS) Auger elektronspektrszkópia (AES) Szekunder ion MS (SIMS) Kisenergiájú el. diff. (LEED) Pásztázó alagútmikroszkóp (STM) Atomi erő mikroszkóp (AFM) EGYÉB ANALITIKAI és ELEKTROANALITIKAI MÓDSZEREK Termogravimetria Ciklikus voltammetria CSATOLT MÓDSZEREK pl. kromatográfia + molekulasp.

2 Newton kísérletei a fehér fénnyel
Sir Isaac Newton (1642–1727)

3 Az infravörös sugárzás felfedezése
Sir William Herschel (1738–1822) A Herschel űrteleszkóp 2009 – 2013 (Far Infrared and Sub-millimetre Telescope: FIRST)

4 A rádióhullámok felfedezése
Heinrich Hertz (1847–1894) 1888: A rádióhullámok felfedezése

5 A Röntgen-sugárzás felfedezése
Wilhelm Conrad Röntgen (1845– 1923) 1895: A Röntgen-sugárzás felfedezése 1901: fizikai Nobel-díj

6 A spektroszkópia születése
William Wollaston (1766–1828) vonalak a napfény spektrumában: 1805 Robert W. Bunsen (1811–1899) Gustav Kirchhoff (1824–1887) Josef Fraunhofer (1787–1826) Fraunhofer-vonalak: 1817 Emissziós spektroszkópia kidolgozása: 1859

7 A fény Elektromágneses sugárzás l Kettőstermészet Részecsketermészet
James Clerk Maxwell (1831 – 1879) l Elektromágneses sugárzás Kettőstermészet Részecsketermészet Albert Einstein (1879 – 1955) 1905: fotoelektromos jelenség fényenergia-kvantum: foton 1924: minden anyagra: Louis-Victor de Broglie (1892 – 1987)

8 A fény tulajdonságai polarizáció E nem polarizált fény
előnézet oldalnézet síkban polarizált fény elliptikusan polarizált fény cirkulárisan polarizált fény +, – +, – intenzitás, kollimáltság (i/n), koherencia (i/n)

9 A fény tulajdonságai spektrálisan: monokromatikus
vonalas – atomi (molekuláris) gázok emissziója (sávos – fluoreszkáló oldatok) „fehér” – feketest-sugárzók Feketetest-sugárzás Wien-törvénye: lmax= b/T b= 2, (51) × 10–3 m K

10 A fény és az anyag kölcsönhatása
„Bohr-feltétel”: DE = E2−E1 = hn E2 E2 foton (hn) abszorpció E1 E1 E2 E2 spontán emisszió E1 E1 E2 E2 stimulált (kényszerített) emisszió E1 E1

11 A fény és az anyag kölcsönhatása
minta abszorpció (transzmisszió) n=n0, I<I0 forrás (monokromatikus) n0, I0 fluoreszcencia, foszforeszencia n<n0 Rayleigh-szóródás n=n0 Raman-szóródás n=n0±n´ reflexió (diffúz, tükrös, teljes, gyengített) minta Lambert-Beer törvény emisszió

12 A fény és az anyag kölcsönhatása
Maggerjesztések Ionizáció Elektron- gerjesztés gerjesztése Molekula- rezgések Molekulák- forgásának Magspin-

13 Molekulák kölcsönhatása a fénnyel
magspinek gerjesztése mágneses térben NMR ionizáció atommag energia-szintjei közötti átmenetek Mössbauer-spektrosz-kópia forgások gerjesztése rezgések elektronok

14 Forgási spektroszkópia: Kétatomos merev rotátor
merev rotátor: r = állandó tehetetlenségi nyomatékok: m: redukált tömeg w: szögsebesség Klasszikus leírás: bármekkora étéket felvehet Kvantummechanikai: diszkrét értékek Rotációs állandó: J=0,1,2,…: Rotációs kvantumszám Kiválasztási szabály (abszorpcióra, emisszióra): 1) állandó dipólusmomentum 2) DJ=±1 (Raman: DJ=0,±2)

15 Forgási spektroszkópia: Kétatomos merev rotátor
A CO forgási spektrumának részlete Energia T% J=4←3 J=5←4 J=9←8 J=7←6 J=6←5 J=8←7 hullámszám /cm1 B0=1,9225 cm1 r0 = 1,13 Å

16 Forgási spektroszkópia: Többatomos merev pörgettyűk
Pörgettyű-típus Tehetetlenségi momentumok Termértékek Szerkezet Példa lineáris Ia=0, Ib=Ic BJ(J+1) HCl, N2, CO2 gömbi Ia=Ib=Ic tetraéder, oktaéder, … CH4, SF6 szimmetrikus  lapított Ia=Ib<Ic +K2(CB) egy Cn (n3) tengely CHCl3, C6H6 szimmetrikus  nyújtott Ia<Ib=Ic +K2(AB) CH3Cl, C2H6 aszimmetrikus Ia<Ib<Ic J, K, L kvantumszámok nincs Cn (n3) tengely H2O, H2O2, CH3OH J=K, K+1, K+2, …

17 MW (forgási) spektroszkópia

18 Mikrohullámú spektrométer (hagyományos)
Vákuum- szivattyú Minta Hangolható MW forrás detektor hullámterelő scanner (vezérlés) detektor Adatgyűjtő számítógép

19 Fourier-transzformációs MW spektrométer
FT elméletét lásd később, IR spektroszkópiánál

20 MW (forgási) spektroszkópia
Alkalmazások: kismolekulák pontos (r0, rs) kötéstávolságainak, geometriájának meghat. inverziós, belső rotációs gátak mérése reaktív specieszek (előállítás ált. kisüléssel) vizsgálata molekulakomplexek (van der Waals komplexek) vizsgálata csillagközi térben előforduló molekulák azonosítása (rádiócsillagászat) 2015-ig kb. 185 „csillagközi molekulát” azonosítottak mikrohullámú és infravörös átmeneteik alapján

21 Rádiócsillagászat


Letölteni ppt "Főbb szerkezetkutató módszerek"

Hasonló előadás


Google Hirdetések