Transzportfolyamatok felszín alatti vizekben S.Tombor Katalin Vízi Közmű és Környezetmérnöki Tanszék.

Slides:



Advertisements
Hasonló előadás
Vízbázisvédelem EU VKI mennyiség Simonffy Zoltán
Advertisements

A hőterjedés differenciál egyenlete
Környezeti és Műszaki Áramlástan II. (Transzportfolyamatok II.)
Vízkészletgazdálkodás
Felszín alatti vízbázisok védelme
6. osztály Mgr. Gyurász Szilvia Balassi Bálint MTNYAI Ipolynyék
Városi környezetvédelem
TRANSZPORTFOLYAMATOK
Környezeti kárelhárítás
Hidrológiai alapú modellek elvi sémája
Felszín alatti vizbázisok védelme
Környezeti rendszerek modellezése
Környezeti kárelhárítás
HASZNÁLT HÉVIZEK FELSZÍNI BEFOGADÓBA TÖRTÉNŐ BEVEZETHETŐSÉGE,
Közúti közlekedés, talajvédelem és vízvédelem Moyzes Antal 2010
TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek.
A potenciális és tényleges párolgás meghatározása
Az Euler-egyenlet és a Bernoulli-egyenlet
Felszín alatti vizek.
Agrár-környezetvédelmi Modul Talajvédelem-talajremediáció KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Környezeti elemek védelme III. Vízvédelem
Környezeti elemek védelme III. Vízvédelem
Matematika III. előadások MINB083, MILB083
Éghajlatot befolyásoló egyéb tényezők Tenger áramlatok.
Transzportfolyamatok a felszín alatti vizekben
Vízi Közmű és Környezetmérnöki Tanszék
Vízi Közmű és Környezetmérnöki Tanszék
Felszín alatti vizek Földkérget alkotó kőzetek elhelyezkedő vízkészlet
Felszín alatti vizek minősítése
Felszín alatti vizek védelme Felszín alatti vizek védelme Összefoglalás II. Összefoglalás II. Simonffy Zoltán Vízi Közmű és Környezetmérnöki Tanszék MTA.
FELSZÍN ALATTI VIZEK VÉDELME
Felszín alatti vizek védelme
Felszín alatti vizek védelme
Transzportfolyamatok felszín alatti vizekben Simonffy Zoltán Vízi Közmű és Környezetmérnöki Tanszék Transzportfolyamatok felszín alatti vizekben Simonffy.
Felszín alatti vizek védelme
Felszín alatti vizek védelme
Felszín alatti vizek védelme Felszín alatti vizek védelme A HASZNOSÍTÁS ALAPELVEI A HASZNOSÍTÁS ALAPELVEI Felszín alatti vizek védelme Felszín alatti vizek.
CSAPADÉK, BESZIVÁRGÁS, FELSZÍNI LEFOLYÁS
A FELSZÍN ALATTI VIZEK VÉDELME
Települési vízgazdálkodás
ÉGHAJLATVÁLTOZÁS – VÍZ – VÍZGAZDÁLKODÁS (második rész)
Felszín alatti vizek védelme Vízmozgás analitikus megoldásai.
TELEPÜLÉSI VÍZGAZDÁLKODÁS ÉS VÍZMINŐSÉGVÉDELEM (BMEEOVK AKM2)
VÍZÉPÍTÉSI ALAPISMERETEK
KARRMORFOLÓGIAI ELEMZÉSEK DIGITÁLIS DOMBORZATMODELLEK ALAPJÁN Telbisz Tamás ELTE, Természetföldrajzi Tanszék.
Tájföldrajzi megfigyelések a Szentendrei-szigeten
Talajaszály előrejelzésének lehetőségei különböző talajtípusokon Barta Károly wahastrat.vizugy.hu.
Kutatói pályára felkészítő akadémiai ismeretek modul Környezetgazdálkodás Modellezés, mint módszer bemutatása KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖK MSC.
Transzportfolyamatok felszín alatti vizekben S.Tombor Katalin Vízi Közmű és Környezetmérnöki Tanszék.
A kapacitív termés-szimulációs modell „Környezetgazdasági modellek”, 2009 Copyright © Dale Carnegie & Associates, Inc.
Vízi Közmű és Környezetmérnöki Tanszék
Sándor Balázs BME Vízépítési és Vízgazdálkodási Tanszék
TANULSÁGOK A FILMMEL KAPCSOLATBAN
Felszín alatti vizek védelme Felszín alatti vizek védelme HASZNOSÍTHATÓ KÉSZLET HASZNOSÍTHATÓ KÉSZLET Felszín alatti vizek védelme Felszín alatti vizek.
FELSZÍN ALATTI VIZEK • mennyisége • pótlódása
Környezeti kárelhárítás
Környezetvédelem és vízgazdálkodás. Víz fizikai tulajdonságai Természetben cseppfolyós, légnemű és szilárd halmazállapotban fordul elő Sűrűség: 0 °C-on.
Tiszai Alföld Jövőkép Építés Budapest Műszaki és Gazdaságtudományi Egyetem Vízi Közmű és Környezetmérnöki Tanszék Alkalmazott modellek.
Szárazföldi vizek csoportosítása
Víz Készítette: 8. osztály.
Az Euler-egyenlet és a Bernoulli-egyenlet
Öntözés tervezés Ormos László
A VÍZ, MINT ÖKOLÓGIAI TÉNYEZŐ
A talajvízkészlet időbeni alakulásának modellezése
A talajvízkészlet időbeni alakulásának modellezése
31. A SZÁRAZFÖLD VIZEI ?.
Előadás másolata:

Transzportfolyamatok felszín alatti vizekben S.Tombor Katalin Vízi Közmű és Környezetmérnöki Tanszék

Magyarországon az ívóvízellátás 95 %-a felszn alatti vizekből történik kb kútból termelnek ivóvizet 1,8 millió m 3 vizet fogyasztunk naponta Miért kell vele foglalkoznunk? komoly vízminőségi előírások kutak jelentős része érzékeny a felszínről érkező szennyezésekre

Miért kell vele foglalkoznunk? A növényzet vízigényének jelentős részét a gyökérzeten keresztül, a talajból veszi fel Magyarországon a nyári csapadékhiány pótlására a talajvízből is felszivárog a víz a gyökérzónába

Miért kell vele foglalkoznunk? A vízfolyások kisvizeinek jelentős része származik felszín alatti vízből Őszi csapadékmentes időszakban a vízi élővilág éltetője

FELSZÍN ALATTI VIZEK Felszíni vizek növényzet Merev vázú kőzetekben tárolt vizek hasadékvizekkarsztvizek Porózus kőzetekben tárolt vizek rétegvíz talajvízpartiszűrésű víz talajnedvesség Telített zóna Telítetlen zóna források alaphozam transzspiráció termálvizek Egy kis terminológia …

féligáteresztő réteg (lösz, iszap, agyag) lencse vízvezető réteg (kavics, homok) ablak karsztos hegyvidék egy több rétegű felszín alatti áramlási rendszer összetevői

utánpótlódás: csapadékból történő beszivárgásmegcsapolás: párolgás vagy vízfolyás 1000 év 100 év 10 év < 1 év Utánpótlódási és megcsapolási helyek között áramlási pályák, ennek megfelelően potenciálviszonyok!!

VV csapadék felszíni lefolyás intercepció transzspiráció evaporáció Q in Q out beszivárgás vízkivétel vízfolyással kapcs. Hidrológiai körforgás evapotranszspiráció

Hidrológiai körforgás intercepció : csapadék függvényében a növényzet alapján felszíni lefolyás : függ lejtéstől, növényzettől, talajtípustól vízfolyással kapcs. : függ talajtípustól, talajnedevsség tartalomtól, medertől evaporáció : vízkapacitás – hervadáspont hervadáspont vízkapacitás evapotranszspiráció : növényzet, meteorológia, talajvízszint

ΔV sm /Δt = A·(B s – B gw + ET gw – Et s ) és (P – E s – L s = B s ) (E s = E gw + E sm ) A: vízgyűjtőterület (L 2 ) Δt: vízmérleg időszaka (T) ΔV gw : a tárolt készlet megváltozás az eredeti talajvízszint felett (L) B s : beszivárgás a felszínen (L/T) B gw : beszivárgás a talajvízbe (L/T) ET sm : párolgás a talajfelszínen (L/T) ET gw : párolgás a talajvízből (L/T) BsBsBsBs ET ET s B gw  V sm ET gw Vízmérleg a telítetlen zónára

ΔV gw /Δt = A·(B gw - ET gw ) + Q in - Q out + Q sw-gw – Q gw-sw – Q abs A: vízgyűjtőterület (L 2 ) Δt: a vízmérleg időszaka (T) ΔV gw : a tárolt készlet megváltozása az eredeti talajvízszint alatt (L) B gw : beszivárgás a talajvízbe (L/T) ET gw : párolgás a talajvízből (L/T) Q in : oldalirányú beáramlás (L 3 /T) Q out : oldalirányú kiáramlás (L 3 /T) Q sw-gw : a felszíni vizekből származó szivárgás (L 3 /T) Q gw-sw : a felszíni vizeket tápláló felszín alatti víz (L 3 /T) Q abs : vízkivétel (L 3 /T) B gw ET gw Q pin Q pout Q gw-sw Q sw-gw Q abs ΔV gw Vízmérleg a telített zónára

Vízfolyások és talajvíz kapcsolata A vízforgalmat a meder ellenállása és a felszíni és felszín alatti víz nyomásszintje közötti különbség határozza meg (a)Q gw-sw = c * ( h gw – h sw ) (b) Q sw-gw = c * ( h sw – h gw ) (c) Q sw-gw = c * ( h sw – h bed ) c: a meder átszivárgási együtthatója gw: talajvíz, sw: felszíni víz, bed: vízfolyás meder (b) kolmatált réteg terep talajvíz vízfolyás (a) (c)

A vízmozgás differenciálegyenlete Induljunk ki a vízmérlegből, de úgy, hogy az elem térfogata V, területe A V·s ·Δh/Δt = Q in - Q out + A·(B gw - ET gw ) + Q sw-gw – Q gw-sw – Q abs s: tározási tényező, az egységnyi nyomásváltozásra jutó tárolt készlet változása (1/L) h: piezometrikus potenciál (L) A jobb oldalon a külső forrásokat és nyelőket vonjuk össze és az egész egyenletet osszuk el a térfogattal: s ·Δh/Δt = (Q pin - Q pout )/V + q q: térfogat egységre eső forrás-nyelő (1/T)

Figyelembe véve, hogy a jobb oldal első tagja a belépő és kilépő hozam eredője, vagyis a sebességvektornak (v) a V térfogat felületére vonatkozó integrálja, és hogy ennek matematikai azonosságon alapuló kifejtése a vektor divergenciája, valamint, hogy a nyomásváltozás idő szerinti differenciahányadosa helyett a parciális differenciál írható s ·  h/  t = - div (v) + q Ha a sebességet a Darcy-törvény szerint számítjuk, azaz v = - K · grad(h), és a forrás csak a h függvénye, akkor : s ·  h/  t = K · div [ grad (h)] + q = K ·  2 h + q(h) --- Bussinesq-egyenlet A vízmozgás differenciálegyenlete

Talajvízháztartási jelleggörbe - adott növényzetre - adotttalajszelvényre - adott meteorológiai viszonyokra BterepETterep EVFterep H m ax Ho Bo Egyszerűsített jelleggörbe ( B gw – ET gw ) átl = f(h átl )

Modellezés ADATGYŰJTÉS KONCEPCIONÁLISMODELL SZOFTVERVÁLASZTÁS VERIFIKÁCIÓ KALIBRÁCIÓ VALIDÁCIÓ SZIMULÁCIÓ PARAMÉTER-BECSLÉS ELŐZETES SZÁMÍTÁSOK előkészítő fázis kidolgozási fázis értékelési fázis ÉRTÉKELÉS

Modflow Felszín alatti vízmozgás modellezése 3 D telített zóna véges differenciák módszere (vízmérleg) permanens / nem permanens állapot

Felszín alatti vízmozgás modellezése vízfolyás tápláló/termelő kút beszivárgás párolgás

Felszín alatti vízmozgás modellezése áramlási pályák elérési idő sebesség vektor keresztmetszeti ábrázolás Modflow - PMPATH

Felszín alatti vízmozgás modellezése szennyezőanyag transzport: advekció diszperzió adszorpció lebomlás Modflow – MT3D

Felszín alatti vízmozgás modellezése WetSpass – Arcview interface bemenő adatok (grid) domborzat - lejtés talajtípus területhasználat csapadék hőmérséklet szélsebesség potenciális evapotranszspiráció talajvízmélység

Felszín alatti vízmozgás modellezése WetSpass – Arcview interface Modflow