Nagy Szilvia 13. Konvolúciós kódolás

Slides:



Advertisements
Hasonló előadás
„Esélyteremtés és értékalakulás” Konferencia Megyeháza Kaposvár, 2009
Advertisements

Készítette: Boros Erzsi
Weblap szerkesztés HTML oldal felépítése Nyitó tag Záró tag Nyitó tag Záró tag oldalfej tözs.
Kódelmélet.
Erőállóképesség mérése Találjanak teszteket az irodalomban
Sorrendi (szekvenciális)hálózatok tervezése
Az előadásokon oldandók meg. (Szimulációs modell is tartozik hozzájuk)
Matematikai Analízis elemei
Készítette: Mester Tamás METRABI.ELTE.  Egy bemeneten kapott szöveg(karakter sorozat) méretét csökkenteni, minél kisebb méretűre minél hatékonyabb algoritmussal.
MI 2003/ A következőkben más megközelítés: nem közvetlenül az eloszlásokból indulunk ki, hanem a diszkriminancia függvényeket keressük. Legegyszerűbb:
Műveletek logaritmussal
Mérés és adatgyűjtés laboratóriumi gyakorlat Virtuális méréstechnika levelező Mingesz Róbert 5. Óra MA-DAQ – Műszer vezérlése November 26.
Kötelező alapkérdések
Kalman-féle rendszer definíció
3. Folytonos wavelet transzformáció (CWT)
Illés Tibor – Hálózati folyamok
1.
4. VÉGES HALMAZOK 4.1 Alaptulajdonságok
Programozási alapismeretek 10. előadás
Elektronikai Áramkörök Tervezése és Megvalósítása
Mérés és adatgyűjtés laboratóriumi gyakorlat Karakterisztikák mérése 1 Makan Gergely, Mingesz Róbert, Nagy Tamás V
Elektronikai Áramkörök Tervezése és Megvalósítása
Mérés és adatgyűjtés Kincses Zoltán, Mingesz Róbert, Vadai Gergely 10. Óra MA-DAQ – Műszer vezérlése November 12., 15. v
Virtuális méréstechnika MA-DAQ műszer vezérlése 1 Mingesz Róbert V
Műszaki ábrázolás alapjai
Tűrések, illesztések Áll: 34 diából.
OPERÁCIÓKUTATÁS Kalmár János, 2011 Tartalom Több lineáris célfüggvényes LP Tiszta egészértékű LP.
T.Gy. Beszedfelism es szint Beszédfelismerés és beszédszintézis Beszédjelek lineáris predikciója Takács György 4. előadás
A digitális számítás elmélete
Szűrés és konvolúció Vámossy Zoltán 2004
A TERMÉSZETTUDOMÁNYOK ALAPJAI 1. Matematika
Huffman Kódolás.
6. Előadás Merevítő rendszerek típusok, szerepük a tervezésben
Darupályák tervezésének alapjai
TÉTELEK Info_tech_2012. Simon Béláné. 1. TÉTEL 1.a. A digitális számítógép és a logikai áramkör kapcsolata (6.4.1.) 1.b. Az ÉS logikai áramkörnek adja.
1 Matematikai Analízis elemei dr. Szalkai István Pannon Egyetem, Veszprém nov. 08.
Lineáris egyenletrendszerek (Az evolúciótól a megoldáshalmaz szerkezetéig) dr. Szalkai István Pannon Egyetem, Veszprém /' /
dr. Szalkai István Pannon Egyetem, Veszprém
Lineáris egyenletrendszerek (Az evolúciótól a megoldáshalmaz szerkezetéig) dr. Szalkai István Pannon Egyetem, Veszprém 2007.
szakmérnök hallgatók számára
Exponenciális egyenletek
Ciklikus, lineáris kódok megvalósítása shift-regiszterekkel
MIKROELEKTRONIKA, VIEEA306
ÁRAMLÓ FOLYADÉKOK EGYENSÚLYA
I276 Antal János Benjamin 12. osztály Nyíregyháza, Széchenyi I. Közg. Szki. Huffman kódolás.
Lagrange-interpoláció
2005. Információelmélet Nagy Szilvia 8. Hamming-kódok.
Határozatlan integrál
Nagy Szilvia 3. Konvolúciós kódolás
Virtuális Méréstechnika Sub-VI és grafikonok 1 Makan Gergely, Vadai Gergely v
Mérés és adatgyűjtés laboratóriumi gyakorlat - levelező Sub-VI és grafikonok 1 Mingesz Róbert V
Nagy Szilvia 5. Út a csatornán át
2005. Információelmélet Nagy Szilvia 1. Az információelmélet alapfogalmai.
2005. Információelmélet Nagy Szilvia 3. Forráskódolási módszerek.
Kommunikációs Rendszerek
Nagy Szilvia 7. Lineáris blokk-kódok
2005. Információelmélet Nagy Szilvia 2. A forráskódolás elmélete.
Nagy Szilvia 9. Ciklikus kódolás
2005. Információelmélet Nagy Szilvia 12. A hibacsomók elleni védekezés.
Hibajavító kódok.
Programozási alapismeretek 8. előadás. ELTE Szlávi-Zsakó: Programozási alapismeretek 8.2/  További programozási.
előadások, konzultációk
Programozási alapismeretek 10. előadás. ELTE Szlávi-Zsakó: Programozási alapismeretek 10.2/  Kiválogatás + összegzés.
2005. Információelmélet Nagy Szilvia 14. Viterbi-algoritmus.
Mikroprocesszorok (Microprocessors, CPU-s)
Nagy Szilvia 6. Csatornakódolás
Nagy Szilvia 2. Lineáris blokk-kódok II.
Kódelmélet Konvolúciós kódok. Architektúra I Input Output L=3, k =1, n=3 konvolúciós kódóló.
Nagy Szilvia 10. Reed—Solomon-kódok
Előadás másolata:

Nagy Szilvia 13. Konvolúciós kódolás Információelmélet Nagy Szilvia 13. Konvolúciós kódolás 2005.

Keret, kódszókeret, kódsebesség Információelmélet – Konvolúciós kódolás Keret, kódszókeret, kódsebesség Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé A konvolúciós kódolás során a tömörített b 1 , b 2 , b 3 , … üzenetet k bites szakaszokra – üzenetszegmensekre – bontjuk, és m+1 egymás utáni üzenetszegmensből alakítjuk ki a kódoló aktuális kimenetét. A kódoló mindig m darab k hosszúságú üzenetszegmenst – keretet – tárol, és egy van a bemenetén.

Keret, kódszókeret, kódsebesség Információelmélet – Konvolúciós kódolás Keret, kódszókeret, kódsebesség Egy lépés során a kódoló beolvas egy üzenetszegmenst az m+1 darab, k hosszúságú bitsorozatból létrehoz egy n hosszúságú kimeneti bitsorozatot, a kódszókeretet. A kódsebesség: R = k/n. eldobja a legrégebben tárolt keretet és elraktározza az újonnan beolvasottat Egy üzenetszegmens m+1 lépés során befo-lyásolja a kimenetet, utána tűnik csak el a tárolókból. A kódoló kényszerhossza K = k (m+1) bit. Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé

Kényszerhossz, fa-kód, trellis Információelmélet – Konvolúciós kódolás Kényszerhossz, fa-kód, trellis Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé Ugyanez az üzenetszegmens a kimeneten n (m+1) bit kialakításában vesz részt, az N = n (m+1) mennyiség a kódoló blokkhossza. Engedjük a kódoló bemenetére az összes lehetséges, nullával kezdődő félig végtelen bitsorozatot, és vizsgáljuk a kimeneti félig végtelen bitsorozatokat. A fa-kód ezek között a bemeneti és kimeneti sorozatok közötti hozzárendelés; a legegyszerűbben bináris fa formájában adható meg. Trellis-kódok a véges kényszerhosszú fa-kódok.

Információelmélet – Konvolúciós kódolás Kódparaméterek Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé A K kényszerhosszú, N blokkhosszú, lineáris, időinvariáns trellis kódokat (N, K) paraméterű konvolúciós kódoknak nevezzük. A konvolúciós kódok tervezése sok esetben lehetőséget nyújt a moduláció tervezésére is. Lehet nem bináris konvolúciós kódokat is tervezni, de a kód kódfája akkor nem bináris lesz. Gyakorlatban nem alkalmazzák. A konvolúciós kódolók létrehozhatók léptetőregiszterekkel, például: k=1, n=2, m=2, K=3, N=6-ra

Információelmélet – Konvolúciós kódolás Kódparaméterek Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé A konvolúciós kódolók létrehozhatók léptetőregiszterekkel, például: k=1, n=2, m=2, K=3, N=6-ra

Információelmélet – Konvolúciós kódolás Jellemezzük a konvolúciós kódoló p-edik ágát egy olyan félig végtelen bitsorozattal, amelyiknek a j-edik eleme akkor és csak akkor 1, ha a p-edik ágban 1-es együtthatóval jelenik meg b i−j . A kódolónkra: az első ág bitsorozata: g1=1 0 1 0 0 0 … a második ág bitsorozata: g2=1 1 1 0 0 0 … Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé

Konvolúció az első ág bitsorozata: g1=1 0 1 0 0 0 … Információelmélet – Konvolúciós kódolás Konvolúció az első ág bitsorozata: g1=1 0 1 0 0 0 … a második ág bitsorozata: g2=1 1 1 0 0 0 … Az első ág kimenete: b1, b2, b3+b1, b4+b2, b5 +b3, …= = g1b A második ág kimenete: b1, b2+b1, b1+b2+b3, b2+b3+b4, b3+b4 +b5,…= =g2b Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé

Kódfa Példaként nézzük a kódolónk bináris fáját: 0 1 – bemeneti bitek Információelmélet – Konvolúciós kódolás Kódfa Példaként nézzük a kódolónk bináris fáját: Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé 0 1 – bemeneti bitek i j – kimeneti bitpárosok

Információelmélet – Konvolúciós kódolás Állapotátmenet-gráf Nézzük a kódolónk tárolóinak állapotai közötti átmeneteket gráfon ábrázolva: Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé bemeneti bitek kimeneti bitpárosok

a trellisnek ezen része tetszőleges számszor ismételhető Információelmélet – Konvolúciós kódolás Trellis diagram Az állapotátmenet-gráfról, vagy az áramkör blokkváz-latáról leolvashatók a különféle bemeneti kombinációk hatására a kimeneten és a tárolókban megjelent bitek, melyeket a trellisen lehet ábrázolni: Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé a trellisnek ezen része tetszőleges számszor ismételhető a tárolók kiürítése

Trellis diagram Információelmélet – Konvolúciós kódolás Az egyszerűsített trellisen az azonos tárolóállapotok, mint egy sorban lévő pontok szerepelnek, és a bemenetet sem mindig tüntetik fel az élekre (a felfelé menő piros élek az 1 bemeneti bitet, a lefelé muta tó kékek a 0-t jelentik: Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé 11  10 01 00 első mélységbeli csomópontok

Információelmélet – Konvolúciós kódolás Trellis diagram Az egyszerűsített trellisen a különböző üzenetek kódolását lehet nyomon követni: Legyen a kódolandó üzenetszakasz 0 0 1 0 1 1 1 0 (trellis – rácsozat) Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé 11  10 01 00

Polinom reprezentáció Információelmélet – Konvolúciós kódolás Polinom reprezentáció Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé Az áramkörünk tulajdonképpen két polinomszorzó eredményeit fésüli össze: A bináris polinomjaink: Az üzenethez rendelhető polinom:

Polinom reprezentáció Információelmélet – Konvolúciós kódolás Polinom reprezentáció Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé Az ágakat jellemző bináris polinomok: Az üzenethez rendelhető polinom: Az kimenet szétosztható 2 darab külön bitfolyamra, melyekhez a következő polinomok rendelhetők:

Polinom reprezentáció Információelmélet – Konvolúciós kódolás Polinom reprezentáció Ha hosszabb az üzenetkeret, az üzenetet is k darab különálló bitfolyamra kell bontani, és a generáló polinomoknak is két fontos indexe lesz. Ezek a polinomok mátrixba rendezhetők: A mátrix első sora jellemzi az első bemeneti bit hatását az n darab kimenetre, a második sor a második bemeneti bitét, … Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé

Polinom reprezentáció Információelmélet – Konvolúciós kódolás Polinom reprezentáció A kódoló polinom-mátrixa: Az üzenethez és a kimenethez rendelhető polinomok vektorokba rendezhetők: Így Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé

Konvolúciós kódok Példa: Nézzük a következő kódoló áramkört: Információelmélet – Konvolúciós kódolás Konvolúciós kódok Példa: Nézzük a következő kódoló áramkört: A kódoló paraméterei: k=2, n=3, m=3, K=8, N=12. A tárolóknak összesen 2 5 = 32-féle állapota lehetséges, az állapotátmeneti gráf 32 csúccsal rendelkezik, a trellis 32 sorral. Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé

Konvolúciós kódok Példa: Nézzük a következő kódoló áramkört: Információelmélet – Konvolúciós kódolás Konvolúciós kódok Példa: Nézzük a következő kódoló áramkört: A generáló polinomok: Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé

Konvolúciós kódok Példa: Nézzük a következő kódoló áramkört: Információelmélet – Konvolúciós kódolás Konvolúciós kódok Példa: Nézzük a következő kódoló áramkört: A generáló polinom-mátrix: Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé

Konvolúciós kódok Példa: Nézzük a következő kódoló áramkört: Információelmélet – Konvolúciós kódolás Konvolúciós kódok Példa: Nézzük a következő kódoló áramkört: Az üzenet és kimenet felbontása: Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé

Konvolúciós kódok Példa: Nézzük a következő kódoló áramkört: Információelmélet – Konvolúciós kódolás Konvolúciós kódok Példa: Nézzük a következő kódoló áramkört: Az üzenethez két-, a kimenethez három komponensű polinom-vektor tartozik: Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé

Konvolúciós kódok Példa: A polinom-mátrix: A kód komponensei: Információelmélet – Konvolúciós kódolás Konvolúciós kódok Példa: A polinom-mátrix: A kód komponensei: Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé

Információelmélet – Konvolúciós kódolás Konvolúciós kódok Példa: Nézzük a következő, kicsit egyszerűbb kódoló áramkört: A kódoló paraméterei: k=2, n=3, m=2, K=6, N=9. A tárolóknak összesen 2 3 = 8-féle állapota lehetséges, az állapotátmeneti gráf 32 csúccsal rendelkezik. Ezeket fogjuk most felrajzolni. 2 2 = 4-féle bemeneti kombináció lehetséges, így minden csúcsból négy ág indul ki. Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé

Konvolúciós kódok Információelmélet – Konvolúciós kódolás Példa: Nézzük a következő, kicsit egyszerűbb kódolót: Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé 00 bemenet 01 bemenet 10 bemenet 11 bemenet

Konvolúciós kódok Információelmélet – Konvolúciós kódolás Példa: Nézzük a következő kódoló áramkör trellisét: Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé 00 bemenet 01 bemenet 10 bemenet 11 bemenet

Konvolúciós kódok Információelmélet – Konvolúciós kódolás Példa: Kódoljuk a 01 11 00 01 00 10 11 üzenetet: Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé 00 bemenet 01 bemenet 10 bemenet 11 bemenet

Konvolúciós kódok Információelmélet – Konvolúciós kódolás Példa: Kódoljuk a 01 11 00 01 00 10 11 üzenetet: Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé 00 bemenet 01 bemenet 10 bemenet 11 bemenet

Konvolúciós kódok Információelmélet – Konvolúciós kódolás Példa: Kódoljuk a 01 11 00 01 00 10 11 üzenetet: Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé 00 bemenet 01 bemenet 10 bemenet 11 bemenet

Konvolúciós kódok Információelmélet – Konvolúciós kódolás Példa: Kódoljuk a 01 11 00 01 00 10 11 üzenetet: Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé 00 bemenet 01 bemenet 10 bemenet 11 bemenet

Konvolúciós kódok Információelmélet – Konvolúciós kódolás Példa: Kódoljuk a 01 11 00 01 00 10 11 üzenetet: Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé 00 bemenet 01 bemenet 10 bemenet 11 bemenet

Konvolúciós kódok Információelmélet – Konvolúciós kódolás Példa: Kódoljuk a 01 11 00 01 00 10 11 üzenetet: Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé 00 bemenet 01 bemenet 10 bemenet 11 bemenet

Katasztrofális kódoló Információelmélet – Konvolúciós kódolás Katasztrofális kódoló Módosítsuk kicsit az első kódolónkat, és nézzük az állapotátmeneti gráfját: Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé Engedjünk csupa 1-est a bemenetre. Ekkor rövid tranziens (két lépés, 11 10 kimenet) után a kimenet csupa nulla lesz.

Katasztrofális kódoló Információelmélet – Konvolúciós kódolás Katasztrofális kódoló Az olyan kódolókat amelyek nem csak tiszta nulla bemenetre, hanem valamilyen más, periodikus bemeneti sorozatra is tiszta nulla kimenetet adnak, katasztrofális kódolóknak nevezik. A katasztrofális kódolónak az állapotátmeneti gráfján mindig van egy olyan hurok, amelyik nem a tiszta nulla állapotból indul és mégis tiszta nulla a kimene- te, azaz nulla a hurok kimenetének Hamming- súlya. Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé

Katasztrofális kódoló Információelmélet – Konvolúciós kódolás Katasztrofális kódoló A katasztrofális kódoló pontos definíciója: Az olyan kódolók, melyek tetszőlegesen nagy Hamming-súlyú bemenetre is korlátos Hamming-súlyú maradhat a kimenet. (l. a kódolónkra bármennyi 1-est engedünk, a kimenet lehet 3-nál nem nagyobb súlyú.) Szeretnénk elkerülni a katasztrofális kódolókat, ezért szeretnénk egy olyan feltételt, amely az állapotátmenet-gráf (hosszadalmas) felrajzolása nélkül is megmondja, hogy katasztrofális-e a kódoló vagy nem. Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé

Katasztrofális kódoló Információelmélet – Konvolúciós kódolás Katasztrofális kódoló Konvolúciós kódok Alapfogalmak Állapotát-meneti gráf Trellis Polinom-reprezentáció Katasztrofális kódoló Szabad távolság Komplex kódábécé Ha k=1, azaz a kódsebesség 1/n, akkor létezik ilyen feltétel: a kódoló akkor és csak akkor nem katasztrofális, ha az ágait jellemző polinomok legnagyobb közös osztója 1: A katasztrofális kódolónkra: