Vízi Közmű és Környezetmérnöki Tanszék

Slides:



Advertisements
Hasonló előadás
Vízbázisvédelem EU VKI mennyiség Simonffy Zoltán
Advertisements

Nitrogén vizes környezetben
A hőterjedés differenciál egyenlete
Környezeti és Műszaki Áramlástan II. (Transzportfolyamatok II.)
Vízkészletgazdálkodás
Porleválasztó berendezések
Felszín alatti vízbázisok védelme
Városi környezetvédelem
TRANSZPORTFOLYAMATOK
Felszín alatti vizbázisok védelme
Környezeti kárelhárítás
Hidrológiai alapú modellek elvi sémája
Felszín alatti vizbázisok védelme
Környezeti rendszerek modellezése
Környezeti kárelhárítás
TRANSZPORT FOLYAMATOK
TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek.
A potenciális és tényleges párolgás meghatározása
Felszín alatti vizek.
A folyamatok térben és időben zajlanak: a fizika törvényei
Agrár-környezetvédelmi Modul Talajvédelem-talajremediáció KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Kutatói pályára felkészítő akadémiai ismeretek modul Környezetgazdálkodás Modellezés, mint módszer bemutatása KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖK MSC.
Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Agrár-környezetvédelmi Modul Talajvédelem-talajremediáció KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Környezeti elemek védelme III. Vízvédelem
KÖZMŰ INFORMATIKA NUMERIKUS MÓDSZEREK I.
Folyadékok mozgásjelenségei általában
piezometrikus nyomásvonal
PTE PMMK Matematika Tanszék dr. Klincsik Mihály Matematika III. előadások MINB083, MILB083 Gépész és Villamosmérnök szak BSc képzés 2007/2008. őszi félév.
Matematika III. előadások MINB083, MILB083
Levegőtisztaság-védelem 7. előadás
Mérnöki Fizika II előadás
Adsorption monomolecul ar adsorben t adsorption desorption p polymolecular condensation : adsorbed amount per unit weight of adsorbent (specific adsorption)
STRONCIUM-ION MEGKÖTŐDÉSÉNEK KINETIKÁJA TERMÉSZETES AGYAGMINTÁKON
Transzportfolyamatok a felszín alatti vizekben
Vízi Közmű és Környezetmérnöki Tanszék
Vízi Közmű és Környezetmérnöki Tanszék
Kárelhárítás- gyakorlat. furatEOVYEOVX Vízsz. mBf f f f
Felszín alatti vizek Földkérget alkotó kőzetek elhelyezkedő vízkészlet
Felszín alatti vizek minősítése
Felszín alatti vizek védelme Felszín alatti vizek védelme Összefoglalás II. Összefoglalás II. Simonffy Zoltán Vízi Közmű és Környezetmérnöki Tanszék MTA.
Transzportfolyamatok II 2. előadás
Felszín alatti vizek védelme
Felszín alatti vizek védelme
Transzportfolyamatok felszín alatti vizekben Simonffy Zoltán Vízi Közmű és Környezetmérnöki Tanszék Transzportfolyamatok felszín alatti vizekben Simonffy.
Felszín alatti vizek védelme
Felszín alatti vizek védelme
Felszín alatti vizek védelme Felszín alatti vizek védelme A HASZNOSÍTÁS ALAPELVEI A HASZNOSÍTÁS ALAPELVEI Felszín alatti vizek védelme Felszín alatti vizek.
CSAPADÉK, BESZIVÁRGÁS, FELSZÍNI LEFOLYÁS
A FELSZÍN ALATTI VIZEK VÉDELME
Települési vízgazdálkodás
ÉGHAJLATVÁLTOZÁS – VÍZ – VÍZGAZDÁLKODÁS (második rész)
-Érzékenység a paraméterek hibáira, -érzékenység a bemenő adatok hibáira Nézzünk egy egyszerű példát...
11.ea.
Transzportfolyamatok II. 3. előadás
Felszín alatti vizek védelme Vízmozgás analitikus megoldásai.
Környezeti kárelhárítás
TELEPÜLÉSI VÍZGAZDÁLKODÁS ÉS VÍZMINŐSÉGVÉDELEM (BMEEOVK AKM2)
Környezeti rendszerek modellezése
Transzportfolyamatok felszín alatti vizekben S.Tombor Katalin Vízi Közmű és Környezetmérnöki Tanszék.
A kapacitív termés-szimulációs modell „Környezetgazdasági modellek”, 2009 Copyright © Dale Carnegie & Associates, Inc.
Transzportfolyamatok felszín alatti vizekben S.Tombor Katalin Vízi Közmű és Környezetmérnöki Tanszék.
Felszín alatti vizek védelme Felszín alatti vizek védelme HASZNOSÍTHATÓ KÉSZLET HASZNOSÍTHATÓ KÉSZLET Felszín alatti vizek védelme Felszín alatti vizek.
FELSZÍN ALATTI VIZEK • mennyisége • pótlódása
Környezeti kárelhárítás
Tiszai Alföld Jövőkép Építés Budapest Műszaki és Gazdaságtudományi Egyetem Vízi Közmű és Környezetmérnöki Tanszék Alkalmazott modellek.
Hővezetés falakban Író Béla Hő- és Áramlástan II.
A talajvízkészlet időbeni alakulásának modellezése
Fluidizáció Jelensége: Áramlás szemcsehalmazon
Előadás másolata:

Vízi Közmű és Környezetmérnöki Tanszék Transzportfolyamatok felszín alatti vizekben S.Tombor Katalin Vízi Közmű és Környezetmérnöki Tanszék

Miért kell vele foglalkoznunk? Magyarországon az ívóvízellátás 95 %-a felszn alatti vizekből történik 1,8 millió m3 vizet fogyasztunk naponta komoly vízminőségi előírások kb. 7000 kútból termelnek ivóvizet kutak jelentős része érzékeny a felszínről érkező szennyezésekre

Miért kell vele foglalkoznunk? A növényzet vízigényének jelentős részét a gyökérzeten keresztül, a talajból veszi fel Magyarországon a nyári csapadékhiány pótlására a talajvízből is felszivárog a víz a gyökérzónába

Miért kell vele foglalkoznunk? A vízfolyások kisvizeinek jelentős része származik felszín alatti vízből Őszi csapadékmentes időszakban a vízi élővilág éltetője

Merev vázú kőzetekben tárolt vizek Egy kis terminológia … növényzet transzspiráció Felszíni vizek FELSZÍN ALATTI VIZEK Merev vázú kőzetekben tárolt vizek hasadékvizek karsztvizek Porózus kőzetekben tárolt vizek rétegvíz talajvíz partiszűrésű víz talajnedvesség Telített zóna Telítetlen zóna források alaphozam termálvizek

egy több rétegű felszín alatti áramlási rendszer összetevői vízvezető réteg (kavics, homok) karsztos hegyvidék féligáteresztő réteg (lösz, iszap, agyag) ablak lencse

egy több rétegű felszín alatti áramlási rendszer összetevői utánpótlódás: csapadékból történő beszivárgás megcsapolás: párolgás vagy vízfolyás 1000 év 10 év Utánpótlódási és megcsapolási helyek között áramlási pályák, ennek megfelelően potenciálviszonyok!! 100 év

Hidrológiai körforgás csapadék intercepció evaporáció transzspiráció vízkivétel evapotranszspiráció beszivárgás felszíni lefolyás vízfolyással kapcs. Qin Qout DV

Hidrológiai körforgás intercepció : csapadék függvényében a növényzet alapján felszíni lefolyás : függ lejtéstől, növényzettől, talajtípustól vízfolyással kapcs. : függ talajtípustól, talajnedevsség tartalomtól, medertől evaporáció : vízkapacitás – hervadáspont vízkapacitás hervadáspont evapotranszspiráció : növényzet, meteorológia, talajvízszint

Vízmérleg a telítetlen zónára Bs ETs Bgw Vsm ETgw ΔVsm/Δt = A·(Bs – Bgw + ETgw – Ets) és (P – Es – Ls = Bs) (Es = Egw + Esm) A: vízgyűjtőterület (L2) Δt: vízmérleg időszaka (T) ΔVgw: a tárolt készlet megváltozás az eredeti talajvízszint felett (L) Bs: beszivárgás a felszínen (L/T) Bgw: beszivárgás a talajvízbe (L/T) ETsm : párolgás a talajfelszínen (L/T) ETgw: párolgás a talajvízből (L/T)

Vízmérleg a telített zónára Bgw ETgw Qpin Qpout Qgw-sw Qsw-gw Qabs ΔVgw ΔVgw/Δt = A·(Bgw - ETgw) + Qin - Qout + Qsw-gw – Qgw-sw – Qabs A: vízgyűjtőterület (L2) Δt: a vízmérleg időszaka (T) ΔVgw: a tárolt készlet megváltozása az eredeti talajvízszint alatt (L) Bgw: beszivárgás a talajvízbe (L/T) ETgw: párolgás a talajvízből (L/T) Qin: oldalirányú beáramlás (L3/T) Qout: oldalirányú kiáramlás (L3/T) Qsw-gw: a felszíni vizekből származó szivárgás (L3/T) Qgw-sw: a felszíni vizeket tápláló felszín alatti víz (L3/T) Qabs: vízkivétel (L3/T)

Vízfolyások és talajvíz kapcsolata A vízforgalmat a meder ellenállása és a felszíni és felszín alatti víz nyomásszintje közötti különbség határozza meg (b) kolmatált réteg terep talajvíz vízfolyás (a) (c) Qgw-sw = c * ( hgw – hsw ) (b) Qsw-gw = c * ( hsw – hgw ) (c) Qsw-gw = c * ( hsw – hbed ) c: a meder átszivárgási együtthatója gw: talajvíz, sw: felszíni víz, bed: vízfolyás meder

A vízmozgás differenciálegyenlete Induljunk ki a vízmérlegből, de úgy, hogy az elem térfogata V, területe A V·s ·Δh/Δt = Qin - Qout + A·(Bgw - ETgw) + Qsw-gw – Qgw-sw – Qabs s: tározási tényező, az egységnyi nyomásváltozásra jutó tárolt készlet változása (1/L) h: piezometrikus potenciál (L) A jobb oldalon a külső forrásokat és nyelőket vonjuk össze és az egész egyenletet osszuk el a térfogattal: s ·Δh/Δt = (Qpin - Qpout)/V + q q: térfogat egységre eső forrás-nyelő (1/T)

A vízmozgás differenciálegyenlete Figyelembe véve, hogy a jobb oldal első tagja a belépő és kilépő hozam eredője, vagyis a sebességvektornak (v) a V térfogat felületére vonatkozó integrálja, és hogy ennek matematikai azonosságon alapuló kifejtése a vektor divergenciája, valamint, hogy a nyomásváltozás idő szerinti differenciahányadosa helyett a parciális differenciál írható s ·h/t = - div(v) + q Ha a sebességet a Darcy-törvény szerint számítjuk, azaz v = - K · grad(h), és a forrás csak a h függvénye, akkor : s ·h/t = K ·div[grad(h)] + q = K ·2h + q(h) --- Bussinesq-egyenlet

( Bgw – ETgw)átl = f(hátl) Talajvízháztartási jelleggörbe Bterep ETterep EVFterep Hmax Ho Bo Egyszerűsített jelleggörbe - adott növényzetre - adotttalajszelvényre - adott meteorológiai viszonyokra ( Bgw – ETgw)átl = f(hátl)

KONCEPCIONÁLIS MODELL SZOFTVER VÁLASZTÁS PARAMÉTER- BECSLÉS ÉRTÉKELÉS Modellezés ADATGYŰJTÉS KONCEPCIONÁLIS MODELL SZOFTVER VÁLASZTÁS VERIFIKÁCIÓ KALIBRÁCIÓ VALIDÁCIÓ SZIMULÁCIÓ PARAMÉTER- BECSLÉS ELŐZETES SZÁMÍTÁSOK előkészítő fázis kidolgozási értékelési ÉRTÉKELÉS

Modflow Felszín alatti vízmozgás modellezése 3 D telített zóna véges differenciák módszere (vízmérleg) permanens / nem permanens állapot

Felszín alatti vízmozgás modellezése vízfolyás tápláló/termelő kút beszivárgás párolgás

Modflow - PMPATH Felszín alatti vízmozgás modellezése áramlási pályák elérési idő sebesség vektor keresztmetszeti ábrázolás

Modflow – MT3D Felszín alatti vízmozgás modellezése szennyezőanyag transzport: advekció diszperzió adszorpció lebomlás

WetSpass – Arcview interface Felszín alatti vízmozgás modellezése WetSpass – Arcview interface bemenő adatok (grid) domborzat - lejtés talajtípus területhasználat csapadék hőmérséklet szélsebesség potenciális evapotranszspiráció talajvízmélység

WetSpass – Arcview interface Felszín alatti vízmozgás modellezése WetSpass – Arcview interface Modflow

Miért kell foglalkoznunk ezzel a témával? Az egyes transzport folyamatok erőteljesen befolyásolják a szennyezőanyagok terjedését és a kialakuló koncentráció eloszlást. felszín talajvíztükör talajvízmozgás

Anyagmérleg h1, C1 h2, C2 h3, C3 diffúzió és diszperzió diszperzió, be diszperzió, ki szorbciós folyamatok átalakulás advekció, be advekció, ki lebomlás advekció

Anyagmérleg oldott anyag koncentrációjának megváltozása felületen megkötött anyag koncentrációjának megváltozása (adszorbció) = + advekció (konvekció) be - ki + diffúzió és diszperzió, be - ki elsőrendű forrás-nyelő + + nulladrendű forrás-nyelő

A felszín alatti vizekre vonatkozó transzportegyenlet t: idő [T] Co: az oldott anyag koncentrációja [M/ L3] n: porozitás [-] s: a szilárd váz sűrűsége [M/ L3] Cs: az adszorbeált anyag koncentrációja [M/ M] v: a szivárgási sebesség vektora [L/T] Dm: a molekuláris diffúziós együttható [L2/T] Dk: a diszperziós tényező tenzora (mechanikai vagy kinematikai diszperzió) [ L2/T] ,0: a koncentrációtól független (un. nullad-rendű folyamat) együtthatója [M/L3/T] 1: a koncentrációtól függő (un. elsőrendű folyamat) forrás/nyelő együtthatója [1/T] C*: csak peremi pontokra!! = Co , ha távozó vízről van szó (q<0) [M/L3] = Cko, a kívülről érkező víz koncentrációja (q>0) [M/L3] k

Advekció A vízzel együtt mozgó oldott szennyezőanyag transzportja dCo/dt = -1/n.div(v.Co) dCo/dt = -1/n.[Co.div(v) + v.grad(Co)] t: idő [T] Co: az oldott anyag koncentrációja [M/ L3] n: porozitás [-] v: a Darcy-féle szivárgási sebesség vektora [L/T] Az elemi térfogatba vízzel együtt belépő és kilépő szennyezőanyag különbsége v.Co: az egységnyi felületen belépő anyagmennyiség A vízmozgás tényleges sebessége v/n, mert a víz csak a pórusokban mozog

Advekció A vízzel együtt mozgó oldott szennyezőanyag transzportja C ADVEKCIÓ x

Diffúzió és diszperzió Koncentrációkülönbség kiegyenlítése miatt kialakuló és a sebességvektor változásaiból adódó transzport dCo/dt = -1/n.div(v.Co) +div(D.grad(Co)) dCo/dt = -1/n.div(v.Co) +D.div(grad(Co)) + grad(Co).grad(D) t: idő [T] Co: az oldott anyag koncentrációja [M/ L3] n: porozitás [-] v: a Darcy-féle szivárgási sebesség vektora [L/T] D: hidrodinamikai diszperziós tényező D = Dm + Dk Dm: molekuláris diffúziós együttható [L2/T] Dk: mechanikai vagy kinematikai diszperziós tényező [L2/T] Molekuláris diffúzió: a koncentrációkülönbség hatására kialakuló transzport (lineáris függvény – az arányossági tényező a diff. együttható) A kinematikai diszperzió: a sebességvektor irányváltozásaiból adódó szóródás (más fizikai tartalom, de azonos matematikai leírás D=Dm + Dk)

Mikroszkópikus diszperzió A részecskék „szóródásából” adódó transzport Mikroszkópikus diszperzió Lamináris vízmozgás, de ütközés a szilárd szemcsékkel Egyenlőtlen sebességeloszlás Longitudinális diszperzió Transverzális diszperzió

Makroszkópikus diszperzió A részecskék „szóródásából” adódó transzport Makroszkópikus diszperzió Geológiai heterogenitás A diszperziós tényező léptékfüggő !!!!

Makroszkópikus diszperzió A részecskék „szóródásából” adódó transzport Makroszkópikus diszperzió kx x C z

Diszperzió C x ADVEKCIÓ DIFFÚZIÓ+DISZPERZIÓ A részecskék „szóródásából” adódó transzport C x ADVEKCIÓ DIFFÚZIÓ+DISZPERZIÓ

Adszorbció Megkötődés a szilárd váz felületén Az oldott és a felületen megkötött anyag koncentrációja között egyensúly alakul ki Az adszorbció jelenségét az ún. izotermák írják le. Lineáris izoterma esetén: Cs=Kd.Co Kd: megoszlási hányados Amíg ez az egyensúly ki nem alakul, a szennyezőanyag nem terjed tovább. Ha a szilárd váz adszorbciós kapacitása feltöltődött, az ezután érkező szennyezőanyag tovább terjed. Ha az érkező víz hígabb, a folyamat fordítottja játszódik le. Beoldódás (deszorbció) a szilárd vázról.

Adszorbció Megkötődés a szilárd váz felületén [n.dCo + (1-n).rsdCs]/dt =-div(v.Co) + n.div(D.grad(Co)) ha figyelembe vesszük a lineáris izotermát (Cs = Kd.Co) és [1+ Kdrs(1-n)/n] - nel végigosztjuk az egyenletet, akkor a következőt kapjuk dCo/dt = -div(v/[1+Kd.rs(1-n)/n].Co) + n.div(D/[1+Kd.rs(1-n)/n].grad(Co)) Az adszorpció hatása tehát látszólag egy kisebb szivárgási sebességgel és diszperziós tényezővel helyettesíthető Ezért hívjuk a kövérrel szedett kifejezés értékét késleltetési tényezőnek. A görbére tehát ugyanaz érvényes, mint az advekcióra és diszperzióra, csak a sebességet és a diszperziós tényezőt értelemszerűen módosítani kell. Nem lineáris izotermák Cs = KF.CoN --- Freudlich izoterma Cs = KL/(1+Co) --- Langmuir izoterma

Adszorbció IZOTERMÁK LINEÁRIS FREUNDLICH LANGMUIR Megkötődés a szilárd váz felületén IZOTERMÁK Adszorbált Cs Oldott C0 LINEÁRIS FREUNDLICH LANGMUIR

+ DIFFÚZIÓ+DISZPERZIÓ Adszorbció Megkötődés a szilárd váz felületén C x ADVEKCIÓ + DIFFÚZIÓ+DISZPERZIÓ késleltetés + ADSZORPCIÓ

Elsőrendű lebomlás A koncentrációtól függő intenzitású lebomlás LEBOMLÁS : C=C0*exp(g*t) dCo/dt = Co. j1 lnCo = j1.t + C Co(t=0) = Ck ln(Co/Ck) = j1.t Co = Ck.exp(j1 .t), Lebomlás: ha j1.< 0 t: idő [T] Co: az oldott anyag koncentrációja [M/ L3] j1: a lebomlás együtthatója [1/T] Radioaktív anyagok. Felezési idő : t1/2 0,5Ck = Ck.exp(j1 .t1/2)  j1=ln0,5/ t1/2 Az áttörési kísérlet végkoncentrációja: Co,vég = Ck.exp(j1 .L/vo)

Kémiai átalakulás A nulladrendű lebomlási tagokon keresztül Annyi transzportegyenlet, ahány komponens A reakcióknak az adott komponensre vonatkozó következményei a nulladrendű forrás-nyelő tagokon keresztül jelennek meg A reakciók eredményeit az adott pillanatban érvényes koncentrációk függvényében, külön egyenletrendszer alapján számítjuk, termodinamikai egyetlenrendszer és adatbázis alapján

Transzportfolyamatok kémiai átalakulás + lebomlás + adszorbció Advekció+diszperzió Co C v