Kép- és modellalkotó eszközök az orvosi gyakorlatban 2. előadás: Matematikai és fizikai alapok.

Slides:



Advertisements
Hasonló előadás
Radioaktivitás Természetes radioaktív sugárzások
Advertisements

Radioaktivitás mérése
Radioaktivitás Henry Becquerel: egy véletlen során felfedezi a radioaktivitás jelenségét 1895-ben. Pierre és Marie Curie: 8 tonna uránszurokércből 0,1.
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Az atomok Kémiai szempontból tovább nem osztható részecskék Elemi részecskékből állnak (p, n, e) Elektromosan semlegesek Atommagból és elektronokból.
Radioaktivitás, izotópok
1. Anyagvizsgálat Feladat Tervezés számára információt nyújtani.
Digitális képanalízis
EM sugárzások kölcsönhatásai
A mikrorészecskék fizikája
A termeszétes radioaktivitás
Orvosi képfeldolgozás
Tartalom Az atom fogalma, felépítése Az atom elektronszerkezete
Tartalom Az atom fogalma, felépítése Az atom elektronszerkezete
Készítette: Borsodi Eszter Témakör: Kémia I.
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Becquerel, Henri ( ) Legfontosabb eredményeit a fluoreszencia, a foszforeszencia, az infravörös sugárzás és a radioaktivitás területén érte el.
Mindent a radioaktivitásról
FIZIKA 9-12 TANKÖNYVSOROZAT Apáczai Kiadó A KERETTANTERV javasolt éves óraszámai változat 55,57492,5- szabad --55,564 2.változat 55,57474-
Sugárzás-anyag kölcsönhatások
Dr. Csurgai József Sugárzástan 1. Dr. Csurgai József
A bomlást leíró fizikai mennyiségek
Példák a Fourier transzformáció alkalmazására
3. A HIDROGÉNATOM SZERKEZETE A hidrogénatom Schrödinger-egyenlete.
Röntgensugárzás keltése, ill. keletkezése
Sugárzások kölcsönhatása az anyaggal
Töltött részecskesugárzások kölcsönhatása az anyaggal.
Tartalom Az atom felépítése Az atom elektronszerkezete
Atomenergia.
Sugárvédelem és jogi alapjai
Veszprémi Viktor Wigner Fizikai Kutatóközpont OTKA NK81447
Rutherford kísérletei
Tanárnő : Szilágyi Emese
2. AZ ATOM Atom: atommag + elektronfelhő = proton, neutron, elektron
Az atom szerkezete Készítette: Balázs Zoltán BMF. KVK. MTI.
Röntgensugárzás.
Az atommag szerkezete és mesterséges átalakítása
Rádióaktivitás Illusztráció.
A termeszétes radioaktivitás
A radioaktív sugárzás biológiai hatása
A termeszétes radioaktivitás
XX. századi forradalom a fizikában
Jean Baptiste Perrin ( )
Arnold Johannes Wilhelm Sommerfeld ( ) –tudatosítja és felhasználja, hogy a h mechanikai hatás dimenziójú (1911) Millikan –a fényelektromos hatás.
Az anyagszerkezet alapjai
Dozimetria, sugárvédelem
Az atommagok alaptulajdonságai
Az atom sugárzásának kiváltó oka
A radioaktivitás és a mikrorészecskék felfedezése
Természetes radioaktív sugárzás
Az atommag alapvető tulajdonságai
Spektroszkópia Analitikai kémiai vizsgálatok célja: a vizsgálati
Úton az elemi részecskék felé
Máté: Orvosi képfeldolgozás1. előadás1 A leképezés tárgya Leképezés Képfeldolgozás Felismerés Leletezés Diagnosztizálás Terápia Orvosi képfeldolgozás Minden.
2. AZ ATOM Atom: atommag + elektronfelhő = proton, neutron, elektron
Sugárzások környezetünkben
RÖNTGENSUGÁRZÁS.
Bővített sugárvédelmi ismeretek 1. Bevezetés, sugárfizikai ismeretek Dr. Csige István Dr. Dajkó Gábor MTA Atommagkutató Intézet Debrecen TÁMOP C-12/1/KONV
Nukleáris medicina Lényege: A radioaktív izotópok diagnosztikai és therápiás célból való felhasználása.
A nagyon sok részecskéből álló anyagok
Molekula-spektroszkópiai módszerek
AZ ATOM FELÉPÍTÉSE.
FAZEKAS ANDRÁS ISTVÁN PhD c. egyetemi docens
Atomenergia.
A) hidrogénizotóp (proton)_____1H1 B) hidrogénizotóp (deutérium)__1H2
Radioaktív lakótársunk, a radon
Optikai mérések műszeres analitikusok számára
A maghasadás és a magfúzió
Az atomelmélet fejlődése
A kémia alaptörvényei.
Előadás másolata:

Kép- és modellalkotó eszközök az orvosi gyakorlatban 2. előadás: Matematikai és fizikai alapok

A kutatások kezdetei (fizikai alapok) M. Planck (1900): abszolút fekete test sugárzásának magyarázata Létrejött a kvantummechanika (kvantumfizika) Kvantumszámok: Főkvantumszám (n), mellékkvantumszám (l), mágneses kvantumszám (m), spinkvantumszám (s) Nobel-díj: 1919

A kutatások folytatódnak… N. Bohr (1913): atommodell Elektronpályák elmélete (diszkrét impulzusmomentumok) Nobel-díj: 1922

A rendszerezett táblázat

Elektromágneses sugárzás

A sugárzások jellemzői Hullámhossz/frekvencia: [m] vagy [Hz] Példa: röntgensugárzás 0.1 – 10 nm vagy 30 PHz – 30 EHz (3×10 16 – 3×10 19 Hz) Energia: [eV] → 1 eV = × J Példa: röntgensugárzás 100 eV – 100 keV (Elnyelt sugár)dózis: [Gy] (Gray) → 1 Gy = 1 J/kg Sugárzási dózis (dózisegyenérték): [Sv] (Sievert) → 1 Sv = 1 W*J/kg Példák: háttérsugárzás 50 mSv/év, fogászati RTG 5 μSv, mellkas CT 6-18 mSv

Atomok és változataik Atommag (protonok és neutronok) és elektronburok Tömegszám (nukleonok száma): protonszám (rendszám) + neutronszám Izotóp: adott elem különböző tömegszámú változatai Ismert elemnél: H, C, I, U… Stabil és instabil Radioaktivitás: instabil atomok bomlása (során keletkező sugárzás)

„Elektromos” kutatás J. Thomson (1897): az elektron felfedezése → Nobel-díj (1906) Katód-sugárzás: a katódról ( ⊖ ) az anód ( ⊕ ) felé áramló elektronok sugárzása

Fluoreszkálás Lumineszcencia, azaz fénykibocsátás Nem a foszforeszkálás! (mert az késleltetett fénykibocsátás) A jelenség abszorpciót (EM-sugárzás elnyelését) követő azonnali fénykibocsátás Orvosi felhasználás: Fluoreszcens mikroszkópia

Radioaktivitás (bomlás) H. Becquerel (1896) felfedezése → Nobel-díj (1903) Bomlási sor (pl. U átalakulása Pb-má) Az aktivitás (azaz a bomlás sebességének) mértékegysége: 1 Bq = 1 bomlás/s (régen 1 Ci = 3.7×10 10 Bq) Felezési idő: radioaktív izotópszám időbeli alakulása (mértékegysége: időmértékegység, pl. Ra esetén 1602 év, 235 U esetén 7×10 8 év)

Radioaktivitás (sugárzás) Ionizáló sugárzás: elegendő energiájú sugárzás atomok ionizációjához (azokból elektronok eltávolításához) Fajtái: Alfa: He (2 proton + 2 neutron) távozása Gyorsan gyengül (levegőben pár cm), papírlap elnyeli Béta: elektron (pozitron) távozása Hatótáv pár tíz cm, alumíniumlap elnyeli Gamma: foton (nagyfrekvenciájú EM-hullám) távozása Sok anyagon áthatol, ólomlemez elnyeli

A röntgensugárzás és létrehozása Katódsugárzás (gyors elektronnyaláb) fémnek ütközve (1) fékezési sugárzást és (2) karakterisztikus sugárzást okoz Fékezési sugárzás (Bremsstrahlung) folytonos (mindenféle frekvenciát tartalmazó) sugárzás Karakterisztikus sugárzási tüskék Fékezési sugárzás

Röntgen-cső

Fourier-sorok (egy kis emlékeztető) Joseph Fourier ( )

Euler-formula Leonhard Euler ( )

Fourier-transzformáció Fourier-sor kiterjesztése (periódus) + Euler-formula Eredmény: (integrál-transzformáció) (FT) Inverz (IFT):

Fourier-transzformáció - változatok Diszkrét FT – IDFT: Fast FT (FFT) – IFFT: Számos algoritmus (a cél flexibilitás és performancia): pl. Cooley–Tukey algorithm Trigonometriai változatok: DST-IDST, DCT-IDCT Alkalmazások: pl. konvolúció Többdimenziós változatok

A DCT és alkalmazása Számítása: A kernelfüggvények 2D-ben: Joint Photographic Experts Group (JPEG v. JPG)

Érdekesség (szférikus harmonikusok) Laplace-egyenlet és megoldása Tömegvonzás esetén a gravitációs potenciálra (geoid):

Legendre-polinomok (példák)

További harmonikusok Asszociált Legendre-polinomok (pl.)

Zernike-polinomok Számításuk Kóma! Asztigmatizmus!

A Hough-transzformáció

A Radon-transzformáció (2D)

A transzformáció eredménye Egy pont transzformáltja Egy egyenes transzformáltja Sinogram

Egy műholdképes példa

A Radon- és Fourier- transzformációk kapcsolata

Központi Szelet Tétel (Central/Fourier Slice Theorem) Fourier alapú Radon invertálási technika alapja Fourier-transzformáció és Radon-transzformáció közötti matematikai kapcsolat leírása: Radon-transzformáció 1D Fourier- transzformáció 2D Fourier- transzformáció

A Radon-transzformált inverze J.Radon eredeti képlete szerint: Visszavetítés (back-projection): ( ) Hilbert-transzformáció

Szűrt visszavetítés (Filtered Back-Projection) A formula: Gyakorlatban: „szűrés” approximáció

A szűrésről A zajok elnyomása érdekében aluláteresztő szűrés kell Ismertebb szűrők (az orvosi képfeldolgozásban): Ramachandran and Lakshminarayanan (Ram-Lak) Shepp-Logan Aluláteresztő cos-szűrő

A fantomok (phantom) Teszt-kép a számítási algoritmusok vizsgálatára Fejfantom: analógia a csont, az agy, a tumor megjelenésére Legismertebb számítási fantom a Shepp-Logan Eredeti fantom Rekonstruált fantom

Felhasznált irodalom Freeman, T.G. (2010):The Mathematics of Medical Imaging, A Beginner’s Guide, Springer Holics László (szerk, 1986): Fizika, Műszaki Könyvkiadó, Budapest Horváth Ferenc (szerk, 1994): A radiológia alapfogalmai, Medicina, Budapest Iniewski, K. (Ed, 2009): Medical imaging, Principles, Detectors and Electronics, Wiley Kári Béla (szerk): Elektronikus oktatási anyag kialakítása az élő szervezet strukturális összetevőinek és biokémiai folyamatainak képalkotó elemzésére Völgyesi Lajos: Fizikai geodézia és gravimetria, BME jegyzet Wikipédia