Üvegházhatás, klímaváltozás, fenntarthatóság

Slides:



Advertisements
Hasonló előadás
A globális felmelegedés és az üvegházhatás
Advertisements

Szélkerék-erdők a világban és hazánkban
Megújulók: mekkora támogatást érdemelnek? Dr. Gács Iván egy. docens Budapesti Műszaki és Gazdaságtudományi Egyetem Energetikai Gépek és Rendszerek Tanszék.
Energetikai gazdaságtan Energiatermelés (Termelési folyamat) gazdasági értékelése.
GLOBÁLIS ÉGHAJLATVÁLTOZÁS
1/10 Energia – történelem - társadalom Közkeletű tévhitek, pótcselekvések.
Energia – történelem - társadalom
Környezetvédelem (Energia és levegőkörnyezet)
Energia és környezet © Gács Iván (BME) 1 Környezetvédelem (Energia és levegőkörnyezet) Az energiafelhasználás hatása a levegőkörnyezetre és.
Energia és (levegő)környezet
Megújuló energiaforrások Napenergia hasznosítása
© Gács Iván (BME)1/10 Energia – történelem - társadalom Energia - teljesítmény.
Energetikai folyamatok és berendezések
Fenntartható energiagazdálkodással az éghajlatváltozással szemben: retorika vagy realitás? Budapesti Műszaki és Gazdaságtudományi Egyetem Környezetgazdaságtan.
Erőállóképesség mérése Találjanak teszteket az irodalomban
1 „ Gazdasági kihívások 2009-ben ” Dr. Hegedűs Miklós Ügyvezető GKI Energiakutató és Tanácsadó Kft. Dunagáz szakmai napok, Dobogókő Április 15.
© Gács Iván (BME) 1/26 Energia és környezet NO x keletkezés és kibocsátás.
Klímaváltozás – fenntarthatóság - energiatermelés
Török Ádám Környezettudatos Közlekedés Roadshow,
© Gács Iván BME Erőművek Új erőmű belépése a rendszerbe 1.
Üvegházhatás, klímaváltozás
Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék 1 Környezetvédelem Üvegházhatás.
Üvegházhatás, klímaváltozás
A LÉGKÖR GLOBÁLIS PROBLÉMÁI
A globális klímaváltozás
Üvegházhatás, klímaváltozás
Villamosenergia-termelés (és elosztás) Dr
1/17 Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék Klímaváltozás – fenntarthatóság - energiatermelés Hogy csökkentsük a széndioxid.
Klímaváltozás – fenntarthatóság - energiatermelés
Energia és környezet A levegőtisztaság-védelem céljai és eszközei Levegőszennyezés matematikai modellezése.
Légszennyezőanyag kibocsátás
A jövő és az energia Mi lesz velem negyven év múlva ? Mivel fogok közlekedni ? Fázni fogok otthon vagy melegem lesz ?
A tételek eljuttatása az iskolákba
© Gács Iván (BME) 1/26 Energia és környezet NO x keletkezés és kibocsátás.
Mi is az? görög ενεργεια kifejezésből Ahol: - az εν- jelentése „be-” - az έργον-é pedig „munka” - az -ια pedig absztrakt főnév Az εν-εργεια összetétel.
A légkör - A jelenlegi légkör kialakulása - A légkör összetétele
Az EU kohéziós politikájának 20 éve ( ) Dr. Nagy Henrietta egyetemi adjunktus SZIE GTK RGVI.
A villamosenergia-ellátás forrásoldalának alakulása
szakmérnök hallgatók számára
Antropogén eredetű éghajlatváltozás A globális átlaghőmérséklet eltérése az átlagtólÉvi középhőmérséklet Pécsett 1901 és 2001 között.
felmelegedés vagy jégkorszak? hazai forgatókönyvek
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Energetikai Gépek és Rendszerek Tanszék Dr. Ősz János Fenntartható fejlődés és energetika.
A Pinch-Point módszer alkalmazása a hőhasznosításban
Szén-dioxid leválasztás és tárolás Környezetvédelmi technológia az erőművi technológiában.
Megújuló energiaforrások – Lehetőségek és problémák
Globális felmelegedés és a különböző ciklusok
Civin Vilmos MVM Zrt. „Klímacsúcs” Budapest, február 27. Klímaváltozás és egy állami tulajdonú villamos társaság.
Bali Mihály (földrajz-környezettan)
A klinikai transzfúziós tevékenység Ápolás szakmai ellenőrzése
1 Gyarapodó Köztársaság Növekvő gazdaság – csökkenő adók február 2.
Ágazati GDP előrejelző modell Foglalkoztatási és makro előrejelzés Vincze János Szirák, november 10.
1. Melyik jármű haladhat tovább elsőként az ábrán látható forgalmi helyzetben? a) A "V" jelű villamos. b) Az "M" jelű munkagép. c) Az "R" jelű rendőrségi.
Klíma és energia: tények, kételyek és kilátások
A GLOBALIIS FOLMELEGEDIIS
Az az atomerőművek energiatermelése, biztonsága és környezeti hatásai
Energia és (levegő)környezet
Energetikai gazdaságtan
Energetikai gazdaságtan
1 „ Beszéljünk végre világosan az energetikáról” Dr. Hegedűs Miklós Ügyvezető GKI Energiakutató és Tanácsadó Kft. Energetika Október 2.
Hőmérséklet változás A hőmérséklet az anyagok egyik fizikai jellemzője, állapothatározó. Változása szorosan összefügg az anyag más makroszkopikus tulajdonságainak.
Hőmérséklet változás A hőmérséklet az anyagok egyik fizikai jellemzője, állapothatározó. Változása szorosan összefügg az anyag más makroszkopikus tulajdonságainak.
Levegőtisztaság-védelem 2.
A GLOBÁLIS KLÍMAVÁLTOZÁS KÉRDÉSEI ÉS VÁRHATÓ REGIONÁLIS HATÁSAI
Város energetikai ellátásának elemzése
/16 © Gács Iván AZ ENERGETIKA ÉS A KÖRNYEZETVÉDELEM GAZDASÁGI ÖSSZEFÜGGÉSEI Dr. Gács Iván ny. egyetemi docens BME Energetikai Gépek és Rendszerek Tanszék.
Energetikai gazdaságtan
Üvegházhatás, klímaváltozás
Készítette: Pacsmag Regina Környezettan BSc
Energia – történelem - társadalom
Előadás másolata:

Üvegházhatás, klímaváltozás, fenntarthatóság Energia és környezet Üvegházhatás, klímaváltozás, fenntarthatóság Tények, mítoszok és kételyek Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék Mottó: „A probléma tudományos része a laikus nagyközönség és a politikusok számára ma valószínűleg sokkal világosabbnak tűnik, mint a témával foglalkozó … kutatók számára.” (Czelnai Rudolf akadémikus, meteorológus) „A legsúlyosabb hiba, ha a tények megismerése előtt kezdünk el elméleteket gyártani. Biztos, hogy a tényeket kezdjük majd el hozzáigazítani az elmélethez, pedig éppen fordítva kellene eljárni.” (Sherlock Holmes mondja dr. Watsonnak) Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék Hőmérséklet történet 2000.10.17 }oxigén tartalmú légkör kialakulása Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

A Föld átlaghőmérséklete az utolsó 1 millió évben H. presapiens Homo erectus Riss Würm H. erectus paleohungaricus (Vértesszőlős) Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

A Föld átlaghőmérséklete az utolsó 100.000 évben Würm jégkorszak H. presapiens H. Sapiens Neanderthalensis H. Sapiens Sapiens (cromagnoni ember) Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

A Föld átlaghőmérséklete az utolsó 10.000 évben Tassili hegység Mezopotámia Babilon Hettiták Egyiptom honfoglalás Mükéné, Kréta Mátyás király Róma alapítása időszámítás kezdete Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

A Föld átlaghőmérséklete 1860-2005 években t,ºC eltérés az 1961-90 évek átlagától Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék Az utolsó évek trendje Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Légköri CO2 koncentráció Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

CO2 és hőmérséklet kapcsolata 1. CO2 tovább nő, de T növekedése megáll, 2. CO2 még állandó, de T csökkenni kezd, 3. CO2 csökkenni kezd (15 000 évvel később) 4. a CO2 csúcs kb. 10-15 ezer évet késik Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

1. (legfőbb) mítosz: Közeli globális felmelegedés Közkeletű vélekedés Alapja az egyes részleteiben jól ismert mechanizmus: növekvő energiafelhasználás, növekvő széndioxid kibocsátás, növekvő légköri széndioxid koncentráció, üvegházhatás. Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék 2000.10.17 Üvegházhatás üvegházhatású gázok: rövidhullámú sugárzást átengedik hosszúhullámú sugárzást gyengítik H2O, CO2, N2O, O3, CH4, freonok jelenlegi hatás: kb. 33-35 K (Földfelszín átlaghőmérséklete 288 K, gázburok nélkül kb. 253-255 K lenne) Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Átlagos hőáramok a légkörben Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Üvegházhatás, veszélyek általános felmelegedés sarki jég, gleccserek olvadása tengerszint emelkedése meteorológiai zónák átrendeződése erős meteorológiai jelenségek (?) Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

A legfontosabb üvegházhatású gázok jellemzői * ppb=10-6 ppm Relatív hatás: egy molekula hányszor akkora hatást fejt ki, mint egy CO2 molekula. Hozzájárulás: szerep a 2000-ig bekövetkezett üvegházhatás növekedésben. E gázok összes részesedése kb. 96% ** Gt/év Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Mit tudunk – hogy tálaljuk? Klímapornó Napilap elsőoldalas cikke 2005-ben 95% a valószínűsége, hogy a melegedés kevesebb 8 foknál 1994 és a legvalószínűbb érték? kb. 10 éve: 3,4 fok ± 70% csak a bizonytalanság nőtt Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

2. mítosz: globális lehűlés „ … Az elkövetkező évtizedben az éghajlat drasztikus változásával számol a Pentagon meteorológiai előrejelzése. A tanulmány szerint az új, megjósolt jégkorszak világméretű konfliktusokat válthat ki. Paradox módon az évtizedek óta tartó felmelegedés okozná a nagy lehűlést az északi féltekén… A globális felmelegedés 2010-re véget ér, bekövetkezik a hirtelen lehűlés.. A tengerek hőáramlása teljesen felborul, az olyan „szállítószalagok”, mint a Golf-áram, összeomlanak. Jéghegyek jelennek meg Portugália magasságában is.” Origó – Tudomány, 2004. április Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

CO2 és hőmérséklet kapcsolata energiafelhasználásából: 1950-ig 20% utána 80% 60% 40% hőmérséklet 1940 30% 70% Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Budapest évi középhőmérséklete Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Ok okozati kapcsolat (mi okozza a 100 000 évenkénti ciklusokat) Az okozat nem előzheti meg időben az okot. Ha a széndioxid az ok: mi okozza a széndioxid koncentráció ciklikus változását? hogyan hat a széndioxid koncentráció a hőmérsékletre? Ha a hőmérséklet az ok: mi okozza a hőmérséklet ciklikus változását? hogyan hat a hőmérséklet a széndioxid koncentrációjára? ??? üvegházhatás Broecker konvejor gázok oldhatósága Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Broecker-conveyor elmélet (egy lehetséges teória) A hőszállítást a Broecker-conveyor végzi: felszíni áramlás: Indiai Óceánról Afrikát megkerülve, Közép-Amerikát érintve Észak-atlanti (Golf-) áramlat, lesüllyedés: a párolgás miatt a Golf-áramlat sótartalma magas az Atlanti Óceán északi részén lehűl, sarki jég olvadásának hatására alacsony sótartalmú környezetben lesüllyed (konvejor motorja), mélységi áramlás: Afrikát megkerülve vissza az Indiai Óceánba. Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Felszíni és mélységi áramlások az óceánok térségében Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Broecker-conveyor elmélet Ciklikusság: Arktisz jege a hőszállítás miatt olvad, majd elfogy, a lesüllyedés elmarad, a konvejor leáll, hőmérséklet átbillenés, sarkvidék lehűl, jég gyarapodás a sarkvidéken, beáll a dinamikus egyensúly (gyarapodás – olvadás), az olvadás hatására újraindul a lesüllyedés, megindul a vízkörzés, újabb hőmérséklet átbillenés, fogyásnak indul a jég, Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

A légköri széndioxid változása Források Nyelők Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék Karbon ciklus Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék Antropogén növekmény ppm +4,5% +45% Gt/év Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Antropogén kibocsátás a természetes kibocsátás arányában 4% 2% Összes 1900-2009: kb. 340 Gt Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Esőerdők területének csökkenése 4% 6% Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Erdőterület változás 1990-2000 Afrika -8% Kongó -4% Szudán -14% Ázsia -1% Indonézia -12% Európa +1% Dél-Amerika -2% Brazília -4% Argentína -8% Világ -2% Forrás: State of the World’s Forests 2005, FAO Forestry Department Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék Légköri többlet Az ábra alapján 1900-2010. évek antropogén kibocsátása: kb. 340 Gt C NASA felmérés szerint az esőerdők tárolt karbontartalma 247 Gt (2010 körüli időszak) A XX. században az esőerdők minimum fele eltűnt, azaz legalább 247 Gt karbon szabadult fel. Ez majdnem annyi, mint a kibocsátás!! Légköri növekmény kb. 270 Gt C Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Klímaváltozás – fenntarthatóság - energiatermelés Hogy csökkentsük a széndioxid kibocsátást? Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Az energetika főbb trendjei Egyre több nemesített energiahordozó (villamosenergia, hőszolgáltatás), Átalakítási hatásfok javítása: gőzparaméterek növelése, kombinált ciklusok, kapcsolt energiatermelés Meghatározó a fenntartható fejlődés (nem csak azóta, hogy kimondták!). Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Mi a fenntartható fejlődés? „a fenntartható fejlődés olyan fejlődés, amely kielégíti a jelen szükségleteit, anélkül, hogy veszélyeztetné a jövő nemzedékek esélyét arra, hogy ők is kielégíthessék szükségleteiket”. (Közös Jövőnk jelentés, 1987) fenntartható fejlődés gazdasági és természeti korlátok : korlátozott források, korlátozott nyelők. a lehetőségek bővülése, életminőség javulása, jólét növekedése. Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Fenntarthatóság korlátai Készletek végessége: rossz interpretáció: hány évre elegendő a készlet helyes értelmezés: a jelenleg biztosan ismert és gazdaságosan kitermelhetőnek tartott készlet aránya a jelenlegi kitermeléshez Példa: kőolaj 1973: olajválság, mert már kevesebb, mint 30 évre elég az olajkészlet (kitermelés 2.8 milliárd t/év, ár: 3 USD/bbl) 2003: a készletek már csak 35-40 évre elegendőek (kitermelés 3.7 milliárd t/év, ár: 25 - 40 USD/bbl) Fogyasztási előrejelzés 2020-ra: 5…5,5 milliárd t/év A készlet jelenleg nem kemény korlát !! Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Fenntarthatóság korlátai Nyelők (befogadók) végessége széndioxid légköri élettartama hosszú (15…100 év), az energiafelhasználás 90%-a származik tüzelésből, az antropogén széndioxid kibocsátás több mint 95%-a a tüzelőanyag felhasználásból származik, a légkör széndioxid koncentrációja folyamatosan nő (jelenleg 45%-kal magasabb, mint a XIX. sz. előtt), üvegház hatás (!?). Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék CO2 kibocsátás jövője Emisszió = népesség * GDP energia igényesség karbon intenzitás [tC/év] [fő] [USD/fő/év] [GJ/USD] [tC/GJ] Karbon intenzitás csökkentése: rövid távú lehetőségek: szén helyett földgáz, nukleáris energia, vízenergia, geotermikus energia, biomassza alkalmazás (nem minden égetés jó!), szélenergia. korlátok: korlátozott készletek, földrajzi elhelyezkedés, ellenérzések. költségek !! Energiaigényesség csökkentése: végfelhasználási (ipari, fűtési, közlekedési stb.) technikák javítása, átalakítási veszteségek csökkentése (hatásfok javítás). Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Lehetséges hosszútávú kibontakozási irányok: fosszilis tüzelőanyagok és a CO2 eltüntetése, (középtáv) fissziós erőművek, növelt biztonsággal, jobb anyaghasznosítással (FBR), fúziós nukleáris energiatermelés, napenergia   villamosenergia tárolással,   hidrogén tárolással,   környezeti hőmérsékletű szupravezetéssel,   űrbeli elhelyezéssel, vagy bármi más, ma még nem ismert megoldás. Megoldás van, csak még nem ismerjük. (1914-ben ki tudta megmondani, mit hoz a XX. század?) Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

CO2 csökkentés költsége: szélerőmű Beruházási támogatás: 300 eFt/kW 30%-a: 90 eFt/kW 13 500 Ft/év/kW (15%/év annuitással) 6,75 Ft/kWh (2000 h/év kihasználással) átvételi felár: 8 Ft/kWh összes támogatás: 14,75 Ft/kWh kiváltott CO2: 0,57kg/kWh (gáztüzelés, 36% (!) hatásfok) 26 eFt/t CO2 (kb. 85 EUR/t) Ír tanulmány (2004): 138 EUR/t (figyelembe veszi a gyakori terhelésváltozás miatti hatásfokromlást a CCGT-knél) Svéd tanulmány (T. Ackermann: Joined up thinking. Renewable Energy World July-August 2005.) 2000 körül: 95-168 EUR/t 2015-re: 40-77 EUR/t (CO2 adótól és fosszilis energiák árától függően) 2005 körüli árak Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék Hőerőművek Szén helyett földgáz (hazai prognózis): fajlagos költség: 6 200 Ft/t CO2 (24 EUR/t) Atomerőmű: költségmegtakarítás! fajlagos költség (?): 0 … -15 eFt/t CO2 Biomassza (fatüzelés, energiaültetvény): sem a költség, sem a széndioxid megtakarítás nem ismert, nem egyértelmű. Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Széndioxid kivonás a füstgázból (post-combustion CO2 capture) Levegő Szén G Atmoszferikus égéstermék (1000 m3/s) Égéstermék Gőz CO2 Gőzturbina Kazán Füstgáz-tisztítás CO2 befogás További lépések G: Generátor Szükséges fejlesztések: Mosószerek/anyagok viselkedésüknek és környezetükre gyakorolt hatásuknak vizsgálata szén specifikus feltételek mellett. Folyamattesztelés kísérleti és demonstrációs léptékben. reagens: etanol-amin oldat költség: 50…60 USD/t CO2 utólag beépíthető megoldás Reducing Greenhouse Gas Emission. The Potential of Coal. IEA - CIAB, 2005 Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Széndioxid kivonás elgázosítással (pre-combustion CO2 capture) Füstgáz CO2 Gáz-turbina Elgázosító Füstgáz-tisztítás CO2 befogás További/változtatott lépések Szükséges fejlesztések: H2-ben gazdag tüzelőanyagú gázturbina, további egységek integrálása A teljes IGCC technológia műszaki/gazdasági optimalizálása CO shift Nagynyomású füstgáz (10m3/s) A technológia hozzáférhető ipari méretekben, a H2 hasznosító gázturbina kivételével. Az IGCC-k elterjedésének egyelőre gátat szab azok magas költsége. Gőz-turbina HK O2 LSZ N2 G: Generátor LSZ: Levegő szeparátor HK: Hőhasznosító kazán Levegő CO shift: (H2O)gőz + CO = CO2 + H2 Reducing Greenhouse Gas Emission. The Potential of Coal. IEA - CIAB, 2005 Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék Oxi-fuel eljárás Levegő G CO2 O2 CO2/H2O Gőz-turbina LSZ Füstgáz-tisztítás Kondenzáció További/változtatott lépések G: Generátor LSZ: Levegő szeparátor Szükséges fejlesztések és vizsgálatok: Kazántervezés az égéstermék recirkulációjával és O2/CO2 égetésével Égéstermék tisztítása, kondenzáció és vízkezelés A folyamat elemeinek összehangolása Kazán H2O, SO2 Szén Jelenleg Oxy-fuel folyamat csak elméleti modellként létezik, laboratóriumi méretekben. Megvalósíthatóságát most kell demonstrálni. tüzelés oxigénnel égéstermék: H2O + CO2 égéstermék recirkuláció kell vízgőz kondenzálás egyszerű levegő szétválasztás energiaigénye nagy Reducing Greenhouse Gas Emission. The Potential of Coal. IEA - CIAB, 2005 Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Széndioxid szállítás költsége szállítási távolság: 250 km költség, USD/t szállított mennyiség, Mt/év Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék Tárolási geológiai formációkban kimerült olaj és gázmezők olaj és gáztermelés intenzifikálása mély sórétegekben metán kitermelés szénrétegekből Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék Óceáni elhelyezés Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Széndioxid kivonás füstgázból erőművi többletköltség (CO2 kivonás) 20…30 EUR/t szállítás 1…10 EUR/t (erősen távolságfüggő) elhelyezés 5…50 EUR/t Összesen: 30…90 EUR/t Felhasználás: olaj- és gázkitermelés segítése 10…50 EUR/t nyereség is lehet (?!) Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Kibocsátási jog ára, EUR/t (2006-2009) Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék Kvótaár 2010 – 2014 Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék

Kibocsátás-csökkentés költsége (egy más megközelítés) bázis: jelenlegi 150 MW szubkritikus lignittüzelésű blokk (német adatok) CCS = Carbon Capture and Storage CCS CCS CCS Coal Industry Advisory Board Reducing Greenhouse Gas Emission. The Potential of Coal. IEA - CIAB, 2005 Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék