Az informatika logikai alapjai

Slides:



Advertisements
Hasonló előadás
Egyszerű oszthatósági problémák
Advertisements

Készítette: Nagy Mihály tanár Perecsen, 2006.
Preferenciák, rendezések, reprezentálhatóság
Algebrai struktúrák.
Függvények.
Természetes számok 0, 1, 2, 3, ..., 24, 25, ..., 1231, 1232, ..., n, ...  = {0, 1, 2, 3, ..., n,...} a természetes számok halmaza Műveletek: összeadás.
Függvények Egyenlőre csak valós-valós függvényekkel foglalkozunk.
Félévi követelmény (nappali)
Halmazok, műveletek halmazokkal
Műveletek logaritmussal
Matematikai logika A diasorozat az Analízis 1. (Mozaik Kiadó 2005.) c. könyvhöz készült. Készítette: Dr. Ábrahám István.
A Halmazelmélet elemei
Euklidészi gyűrűk Definíció.
Algebrai struktúrák 1.
Csoport részcsoport invariáns faktorcsoport részcsoport
Gyűrűk Definíció. Az (R, +, ·) algebrai struktúra gyűrű, ha + és · R-en binér műveletek, valamint I. (R, +) Abel-csoport, II. (R, ·) félcsoport, és III.
4. VÉGES HALMAZOK 4.1 Alaptulajdonságok
Kocsisné Dr. Szilágyi Gyöngyi. Elérehet ő ség: aszt.inf.elte.hu/~szilagyi/ aszt.inf.elte.hu/~szilagyi Fogadó óra: hétf ő
Halmazok.
Számhalmazok.
Algebra a matematika egy ága
Halmazok, relációk, függvények
Az informatika logikai alapjai
MATEMATIKA e-tananyag 9. osztály
Fejezetek a matematikából
A Halmazelmélet elemei
A lokális szélsőérték és a derivált kapcsolata
Valós számok Def. Egy algebrai struktúra rendezett test, ha test és rendezett integritási tartomány. Def. Egy (T; +,  ;  ) rendezett test felső határ.
6. SZÁMELMÉLET 6.1. Oszthatóság
1.3 Relációk Def. (rendezett pár) (a1 , a2 ) := {{a1} , {a1 , a2 }} .
Készülj az érettségire
A számfogalom bővítése
Asszimptotikus viszonyok. Asszimptotikus viszonyok számításánál felhasználható ismeretek: 1.Az asszimptotikus viszonyok reláció-tulajdonságai: A következő.
Halmazok Összefoglalás.
*** HALMAZOK *** A HALMAZ ÉS MEGADÁSA A HALMAZ FOGALMA
Relációk.
Függvények.
Halmazműveletek.
Halmazok Tanítás.
A logaritmusfüggvény.
Másodfokú függvények.
16. Modul Egybevágóságok.
Természetes és formális nyelvek Jellemzők, szintaxis definiálása, Montague, extenzió - intenzió, kategóriákon alapuló gramatika, alkalmazások.
Ábrahám Gábor Radnóti Miklós Kísérleti Gimnázium Szeged
1 Példa. 2 Észrevételek 1. G i következő tulajdonságai invariánsak a direkt szorzat képzésre: asszociativitás, kommutativitás, egységelem létezése, invertálhatóság.
1. MATEMATIKA ELŐADÁS Halmazok, Függvények.
Rövid összefoglaló a függvényekről
Az informatika logikai alapjai
Hozzárendelések, függvények
Az informatika logikai alapjai
Műveletek, függvények és tulajdonságaik Mátrix struktúrák:
Az informatika logikai alapjai
Algebrai struktúrák: csoport, gyűrű, test. RSA Cryptosystem/ Titkosítási rendszer Rivest, Shamir, Adelman (1978) RSA a neten leggyakrabban használt.
A MATEMATIKA FELÉPÍTÉSÉNEK ELEMEI
előadások, konzultációk
A Függvény teljes kivizsgálása
Valószínűségszámítás II.
előadások, konzultációk
Az informatika logikai alapjai
előadások, konzultációk
Kiterjesztések szemantikája: Szemantikai tartomány : Adatoknak, vagy értékeknek egy nem üres halmazát szemantikai tartománynak nevezzük. Jelölése: D. Egy.
Felosztási tétel Legyen R ekvivalenciareláció: reflexív, azaz tetsz. a-ra aRa, szimmetrikus, azaz tetsz. a, b-re ha aRb, akkor bRa, tranzitív, azaz tetsz.
2. gyakorlat INCK401 Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2015/2016. I. félév AZ INFORMATIKA LOGIKAI ALAPJAI.
Az informatika logikai alapjai
II. konzultáció Analízis Sorozatok Egyváltozós valós függvények I.
IV. konzultáció Analízis Differenciálszámítás II.
Algebrai struktúrák 1.
1.3 Relációk Def. (rendezett pár) (a1 , a2) := {{a1} , {a1 , a2 }} .
Adatbázis-kezelés 2. Relációs adatbázisok.
Csoport, félcsoport, test
Előadás másolata:

Az informatika logikai alapjai INCK401 Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2014/2015. I. félév 2. gyakorlat

6. Két halmaz Descartes (direkt) - szorzata Azoknak a rendezett pároknak a halmazát, amelyeknek az első komponense az A-nak, a második komponense a B-nek eleme, az A és a B halmazok Descartes-féle szorzatának nevezzük. Jele: A x B A x B = { (x;y) | x ∈ A és y ∈ B } Ha |A|=n és |B|=m, akkor |A x B|=n*m Fontos művelet!

Descartes-szorzat Példa: A = {1; 2} B = {1; 3} A x B = {(1;1); (1;3); (2;1); (2;3)} 11. feladat: A = {1; 4} B = {2; 3; 4} A x B = ? 12. feladat: A = {1; 4; 7} Melyek elemei AxB-nek? (1;3) (7;2) (3;4) (4;4) (3;7) (4;1) (4;7) (2;7) (2;1) (7;4) (2;3) (1;4) Add meg a hiányzó elemeket! B x A = ?

6+1. n db halmaz Descartes (direkt) - szorzata Azoknak a rendezett elem-n-eseknek a halmazát, amelyeknek az első komponense az A1-nek, a második komponense a A2-nek, …, és az n-dik komponense az An-nek eleme, az A1, A2, …An halmazok Descartes-féle szorzatának nevezzük. Jele: A1 x A2 x … x An A1 x A2 x … x An = { (a1,a2,…,an) | a1 ∈ A1, a2 ∈ A2, …, an ∈ An }

Halmazműveletek főbb azonosságai Két halmaz egyenlő, ha ugyanazok az elemeik. Kommutatív Asszociatív Disztributív Idempotens De-Morgan Stb… Ezt csak említem, nem fog kelleni.

2. Relációk Definíció: Az A és B halmazok Descartes- szorzatának egy R ⊆ AxB részhalmazát az A és B halmazok közötti (binér) relációnak nevezzük. Ha (a,b) ∈ R, akkor azt mondjuk, hogy „az a elem R relációban van b-vel”; aRb A=B esetén A-n értelmezett relációnak mondjuk.

2. Relációk Definíció: Az A halmazon értelmezett R ⊆ AxA relációt Ekvivalenciarelációnak nevezzük, ha R Reflexív (∀a ∈ A: aRa) Szimmetrikus (∀a, b ∈ A: ha aRb, akkor bRa) Tranzitív (∀a, b, c ∈ A: ha aRb és bRc, akkor aRc) Példa: = (feladat ellenőrizni)

2. Relációk Definíció: Az A halmazon értelmezett R ⊆ AxA relációt Féligrendezési relációnak nevezzük, ha R Reflexív Antiszimmetrikus (∀a, b ∈ A: ha aRb és bRa, akkor a=b) Tranzitív Példa: részhalmaz (feladat ellenőrizni)

2. Relációk Definíció: Az A halmazon értelmezett R ⊆ AxA relációt Rendezésnek nevezzük, ha R Féligrendezés és Minden a, b eleme A esetén: aRb vagy bRa Példa: A=R, ≤ (feladat ellenőrizni)

Példák, feladatok Legyen A a sík összes egyeneseinek halmaza! Ekvivalenciareláció-e az A halmazon a párhuzamosság? Melyek az ekvivalenciaosztályok? 13. Legyen A a sík összes egyeneseinek halmaza! Ekvivalenciareláció-e az A halmazon a merőlegesség? 14. Legyen R={(a;a); (a;b); (a;c)} az {a;b;c} halmazon értelmezett reláció! Minimum hány elemmel kell kiegészíteni az R halmazt, hogy az reflexív legyen? szimmetrikus legyen?

3. Függvények Definíció: Egy R ⊆ AxB relációt függvénynek nevezzük, ha abból, hogy (a,b)∈R és (a,c)∈R következik, hogy b=c. Bármely adott dologhoz legfeljebb egy dolgot rendelünk hozzá.

3. Függvények, mint egyértelmű hozzárendelések A hozzárendelések között vannak olyanok, amelyek az egyik halmaz minden eleméhez a másik halmaznak pontosan egy elemét rendelik hozzá. Ezek az egyértelmű hozzárendelések. Az egyértelmű hozzárendeléseket függvényeknek nevezzük. A függvényeket kisbetűkkel jelöljük: f,g,h, … stb. Azokat a függvényeket, amelyek mindkét irányban egyértelműek („megfordíthatóak”), kölcsönösen egyértelmű függvényeknek nevezzük.

3. Függvények A függvényt megadhatjuk táblázattal grafikonnal nyíl-diagrammal képlettel vagy egyéb utasítással Azt a halmazt, amelynek az elemeihez hozzárendeljük a másik halmaz elemeit, alaphalmaznak, a másik halmazt, amelybe a hozzárendelt elemek tartoznak, képhalmaznak nevezzük. A hozzárendelési szabály (utasítás) adja meg a függvényt, amely szerint az alaphalmaz elemeihez egyértelműen hozzárendeljük a képhalmaz elemeit.

Értelmezési tartomány - ÉT Az alaphalmaz azon elemeinek a halmaza, amelyekre a hozzárendelési szabály érvényes. Ez lehet maga az alaphalmaz is. Az értelmezési tartomány elemeit szokás változóknak is nevezni.

Értékkészlet - ÉK A képhalmaz azon elemeinek a halmaza, amely értékeket a függvény felvesz. Ez lehet a teljes képhalmaz is. Elemei a függvényértékek.

Tulajdonságok injektív: ha különböző elemekhez különbözőket rendel hozzá (pl. log, exp) szürjektív: minden elem előáll képelemként bijektív (kölcsönösen egyértelmű): ha injektív és szürjektív

Példák, feladatok f: R → R, x → 2x g: R → R , x → x2 stb…

Induktív definíció Egy sajátos és nagyon megbízható definíciós módszer. Elsősorban halmazok és függvények definiálására használható. A definíció két fő részből áll: A bázis megadása A szabály, vagy szabályok megadása

Példák Természetes számok halmaza: Pozitív páratlan számok halmaza :=P Bázis: a 0 egy természetes szám Bővítési szabály: ha a egy természetes szám, akkor a+1 is egy természetes szám Pozitív páratlan számok halmaza :=P Bázis: az 1 eleme P-nek Bővítési szabály: ha a eleme P-nek, akkor a+2 is eleme P-nek

Példák Öttel osztva kettő maradékot adó számok halmaza :=K Bázis: 2 eleme K-nak Bővítési szabály: ha a eleme K-nak, akkor a+5 eleme K- nak Hárommal osztható egész számok halmaza:=H Bázis: 3 eleme H-nak Bővítési szabályok: ha a eleme K-nak, akkor a+3 eleme K-nak ha b eleme K-nak, akkor b-3 eleme K-nak

Példák Faktoriális függvény (f) Bázis: Bővítési szabály: (0;1) eleme f-nek „(1;1) eleme f-nek” Bővítési szabály: ha (a;b) eleme f-nek, akkor (a+1; b*(a+1)) eleme f-nek (0;1); (1;1); (2;2); (3;6); (4;24); (5;120);…

Segédletek logikából Dr. Várterész Magda: Halmazokhoz: http://www.math.klte.hu/~kovacsa/Halmaz.pdf Dr. Mihálydeák Tamás: http://www.inf.unideb.hu/~mihalydeak/Logika_html_2011_11_15.zip http://www.inf.unideb.hu/~mihalydeak/Logika_my_twt-treeview.html http://www.inf.unideb.hu/~mihalydeak/Inf_log_ea_06_07_1.pdf Dr. Várterész Magda: http://www.inf.unideb.hu/~varteres/logika/Logikafo.pdf http://www.inf.unideb.hu/~varteres/logika_peldatar/matlog.pdf http://www.inf.unideb.hu/~varteres/logika_peldatar/megoldas.pdf Lengyel Zoltán: http://www.inf.unideb.hu/~lengyelz/docs/logika.pdf