Termikus szimuláció kiegészítés
Heat equation
Boundary conditions second kind (Neumann) third kind (Robin) first kind (Dirichlet)
Solution methods Analytical: Advantages exact explicit solution formula Disadvantages necessity of model simplification Numerical: Advantages possibility of complex case analysis Disadvantages solution dependent on discretisation mesh
Solution comparison: analytical A C B
A C B Solution comparison: difference
Green’s functions Methods for obtaining method of images Laplace transform separation of variables Possible interpretations response to instantaneous heat generation response to initial temperature distribution
Initial distribution: Energy generation: Prescribed temperature: Prescribed heat flux: Convective condition: Green’s functions
Temperature response dumping and lagging
IC chip thermal model Boundary conditions: Lateral surfaces: Bottom surface: Top surface: Heat equation: adiabatic surface heat flux heat exchange coefficient adiabatic surface adiabatic surface adiabatic surface heat exchange coefficient
Multilayered model Non-ideal contacts: Ideal contacts: adiabatic surface heat flux heat exchange coefficient adiabatic surface adiabatic surface adiabatic surface heat exchange coefficient
Green’s function solution methodology
MEMS tervező szoftverek áttekintés
A tervezés nem annyira "triviális", mint IC-nél
Részletesebben:
Főbb szereplők:
Főbb szereplők Cadence Mentor Tanner Dolphin Softmems Coventor
Az MIT-ről származó MEMCAD 2.0 rendszer blokkvázlata
Torziós mikrotükör FEM vizsgálata a MEMCAD 2.0 rendszerben
Cadence + MEMS design kit: technológia
CMOS + frontside m.mach.
Cadence + MEMS design kit: struktúra
Cadence + design kit
Cadence + MEMS design kit: design flow
Cadence + MEMS design kit: modellredukció FEM modellből viselkedési leírás, fitting
Modellredukció FEM modellből viselkedési leírás ENTITY ww IS GENERIC (y2pole1_fpole, y3gain_pos_value, y5pos_off_value, y4_atan_neg_value : REAL); PIN ( in0, out0 :ELECTRICAL ); END ENTITY ww; ARCHITECTURE behavioral OF ww IS STATE V_primey2 : ANALOG ; BEGIN RELATION PROCEDURAL FOR INIT => y2pole1_fpole := ; y3gain_pos_value := ; y5pos_off_value := ; y4_atan_neg_value := 10.0; PROCEDURAL FOR DC, AC, TRANSIENT => out0.i %= out0.v* V_ primey2* *y2pole1_fpole*y3gain_pos_value * y5pos_off_value ; EQUATION ( V_primey2 ) FOR AC, TRANSIENT => - in0.i* e-07 + atan(y4_atan_neg_value*in0.v) - V_primey2* *y2pole1_fpole - ddt(V_primey2) == 0.0 ; END RELATION ; END ARCHITECTURE behavioral ; HDL-A (Eldo), ma: VHDL-AMS
Cadence + MEMS design kit: p.cell
Cadence + MEMS design kit: DRC
Cadence + MEMS design kit: eredmény
SoftMEMS – egy MEMS sw vendor
FEM model viselkedési model
Alkalmazások – termikus
Alkalmazások – biometria
Alkalmazások – optika
Alkalmazások – SoC + MEMS
Gyártás: pl. MPW, mint IC-nél