Légkör.

Slides:



Advertisements
Hasonló előadás
A LEVEGŐ.
Advertisements

A globális felmelegedés és az üvegházhatás
A FÖLD.
A Föld helye a Világegyetemben. A Naprendszer
Lehetnek számunkra hasznosak a mikrobák?
A légkör összetétele és szerkezete
Időjárás, éghajlat.
Környezetgazdálkodás 1.
Atmoszféra - A Földünk légköre
Kémia 6. osztály Mgr. Gyurász Szilvia
Felelősséggel a környezetért! Alapvetően azért nem erről szól a feladat! Készítette: Mácsai Vivien GTK-GVAM I.évf. / 2. csoport Gödöllő, 2008.
Készítette: Hokné Zahorecz Dóra 2006.december 3.
A környezeti elemek I. A légkör
IV. fejezet Összefoglalás
A Föld szférái Hidroszféra Krioszféra Litoszféra Bioszféra Atmoszféra.
Légköri sugárzási folyamatok
Folyók, Hol-tenger és érdekességek
Egy anyag 3 halmazállapot.
A globális felmelegedést kiváltó okok Czirok Lili
Légkör.
III. Anyag és energia áthelyeződési folyamatok az óceán-légkör rendszerben A nagy földi légkörzés.
Érckörforgások az óceáni kéreg és a tenger között.
Készítő: Ott András Témakör: Ásvány és kőzettan
Készítette: Kálna Gabriella
Dr. Bulla Miklós (szerk.)
A levegőburok anyaga, szerkezete
Víz a légkörben Csapadékképződés.
KOLLOID OLDATOK.
A légkör - A jelenlegi légkör kialakulása - A légkör összetétele
HETEROGÉN RENDSZEREK SZÉTVÁLASZTÁSA
LEVEGŐTISZTASÁG-VÉDELEM
Levegőtisztaság-védelem 6. előadás
Levegőtisztaság-védelem 7. előadás
Levegőtisztaság-védelem 3. előadás Természetes és antropogén eredetű légszennyezők. Pont-,vonal-, diffúz források.
Levegőtisztaság-védelem 3. előadás Természetes és antropogén eredetű légszennyezők. Pont-,vonal-, diffúz források.
A közlekedés és levegőszennyezés; A szmog
Felelősséggel a környezetért!
Aerosztatikai nyomás, LÉGNYOMÁS
Globális környezetvédelmi problémák, ózon
A Föld légköre és éghajlata
LÉGKÖR.
Antropogén eredetű éghajlatváltozás A globális átlaghőmérséklet eltérése az átlagtólÉvi középhőmérséklet Pécsett 1901 és 2001 között.
A levegő nyomása és a forrás
KÉSZÍTETTE: Takács Zita Bejer Barbara
Ózonlyuk - probléma? Az ózonról általában Mi az ózonlyuk-probléma?
Szigyártó Erzsébet XI.B
A levegő nem csak különböző gázok keveréke.
A légkör fizikai tulajdonságai alapján rétegekre osztható
16.ea. BUDAPEST ÉS A DUNA Légszennyezések: történelmi áttekintés II. Edward (13 th c.): széntüzelés betíltása III. Richard (14-15 th c.): füstadó.
Levegőtisztaság-védelem
A légkör és a levegőszennyezés
Földgáz és Kőolaj Szücs Tamás 10.c.
Időjárási és éghajlati elemek:
A Föld légkörének hőmérsékleti tartományai
BUDAPEST ÉS A DUNA Légszennyezések: történelmi áttekintés II. Edward (13 th c.): széntüzelés betíltása III. Richard (14-15 th c.): füstadó 17 th.
LEVEGŐTISZTASÁG-VÉDELEM
Környezettechnika Levegőtisztaság-védelem
Környezetgazdálkodás 1.
Tüzeléstechnika A keletkezett füstgáz
Felelősséggel a környezetért! Készítette: Mácsai Vivien GTK-GVAM I.évf. / 2. csoport Gödöllő, 2008.
Levegőszennyeződés.  A levegőben természetes állapotban is sokféle gáz található:  négyötödnyi nitrogén  egyötödnyi oxigén.
A légkör függőleges felépítése és kémiai összetétele
Atmoszféra - A Földünk légköre
Készítette: Váradi Tímea 10. osztály
A légkör fizikai tulajdonságai alapján rétegekre osztható
A KÉNVEGYÜLETEK LÉGKÖRI KÖRFORGALMA
Emisszió források 1/15. ML csoport részére 2017.
18. AZ ATMOSZFÉRA.
Atmoszféra.
Talaj (litoszféra - pedoszféra )
Előadás másolata:

Légkör

A légkör összetétele A Föld légköre több tízezer kilométer vastag gázréteg, amely együtt forog a Földdel. A földfelszíni viszonyok alakulása és az élet szempontjából alapvető jelentőségű. Különböző gázok keverékéből áll, melyek sűrűsége és nyomása a Földtől távolodva exponenciálisan csökken. A légkör alsó rétegeiben a jellemző összetétel: N2: 78,05 v% O2: 21,00 v% Ar : 0,93 v% Egyéb: 0,02 v% (nemesgázok, vízgőz, szén-dioxid, ózon, kén-dioxid, nitrogén-oxid, por)

A légkör összetétele A légkör összetétele a földfelszíntől távolodva változik (a legkülső övben már 100 %-ban hidrogénből áll)

A légkör szerkezete A légkört tartományokra (gömbhéjakra) osztjuk. A talajfelszínnel közvetlenül érintkező rétege a troposzféra (átlagos vastagsága Magyarország fölött 11 km). Görög eredetű szó, a 'tropo' azt jelenti, hogy valami változik. Itt játszódik le az időjárási folyamatok többsége (itt keletkeznek a felhők, itt található a vízgőz legnagyobb része). A hőmérséklet a magassággal csökkenést mutat. A troposzféra tetején ez a csökkenés megáll, kb. -56 oC-on. Ez a tropopauza, ami elválasztja a troposzférát a fölötte következő rétegtől.

A légkör szerkezete A troposzféra fölötti réteget sztratoszférának nevezzük, ami kb. 50 km magasságig terjed. Itt a hőmérséklet a magassággal növekszik. A sztratoszférában helyezkedik el az ózonréteg, ami rendkívüli vékony. (talajfelszíni légnyomáson csupán 3 mm vastag lenne.) Itt dúsulnak fel az ún. üvegház-hatást (légköri felmelegedést) okozó gázok (széndioxid, metán), amelyek azzal fejtik ki hatásukat, hogy a Földről kisugárzódó hőenergiát ernyőként visszaverik. A sztratoszféra tetején a sztratopauzánál a hőmérséklet kb. -2 oC

Rétegek A sztratoszféra fölött következő mezoszférában a hőmérséklet a magasággal csökken. A mezopauza kb. 80 km-es magasságában a hőmérséklet -93 oC Az ezután következő termoszférában először növekszik, majd állandó a hőmérséklet. A termopauza 800 km-es magassága fölött található az exoszféra, ahol a légkör fokozatosan átmegy a bolygóközi térbe.

A légkör szerkezete és a hőmérséklet alakulása a rétegekben

További összetevők A levegő, amit belélegzünk, nemcsak gázokból áll. Aeroszolokat is tartalmaz, amik parányi folyadék, vagy szilárd lebegő részecskék. Fontos szerepet játszanak a légkörben, és hatást gyakorolnak az emberi egészségre és a környezetre.

Részecskék megjelenési formái Aeroszol: gázban diszpergált szilárd és/vagy folyadék részecske Füst: gázban eloszlott szilárd részecskék Köd: folyadékcseppek diszperziója gázban Az aeroszolok származhatnak természetes és antropogén (ember általi) forrásokból. A légkörbe kerülhetnek direkt módon, mint részecskék (elsődleges aeroszolok), vagy vegyi folyamatok eredményei is lehetnek (másodlagos aeroszolok).

Részecskék osztályozása Élő vagy élettelen Élő anyag: baktériumok, gombák, spórák Élettelen: a korom, por, tengeri só, stb. Részecskék eredete szerint Elsődleges (valamilyen folyamat során közvetlenül részecske képződik, pl. kondenzáció, erózió) Másodlagos részecskék (a részecskék gázhalmazállapotú anyagokból képződnek)

Természetes eredetű részecskék Tengervíz (a vízfelszínen képződő buborékok szétpattanásakor képződő apró vízcseppeket a szél felkapja és kiszárítja - az így keletkező sókristályok alkotják az un. háttér aeroszolt) Vulkáni hamu A természetes eredetű kénhidrogénből képződő kénsavból és ammóniából ammónium-szulfát részecskék képződhetnek A talaj szétaprózódásából származó szél által felkavart por, erdőtüzek

Emberi tevékenységből származó, antropogén részecskék Különböző ipari folyamatok (kőtörés, őrlés, kohászat, cement és mész gyártás, stb.) és a szénből történő energiatermelés Mezőgazdasági égetés, közlekedés

A részecskék mérete Jellemző mérettartomány: 0,0002 μm - 5000 μm-ig Az atmoszféra szennyezésével kapcsolatos részecsketartomány: 0,001 – 100 μm. Méret függ az eredettől is: 10 μm-nél nagyobbak általában mechanikai folyamatok során jönnek létre (őrlés, törés, erózió stb.) 10 – 0,1 μm tartományba eső részecskék gyakran égési folyamatok eredményei

Az atmoszférában megtalálható részecskék méretei Két fő csoportot különböztetünk meg: 10 μm ≥ részecskék (PM10) 2,5 μm ≥ részecskék (PM2,5)

Részecskék távozása az atmoszférából Minden részecske a földfelszínre érkezik, eltérés csak a tartózkodási időkben van. A talajra való érkezés két lehetősége: száraz kiülepedés (20 %) nedves kicsapódás (80%) Ez függ: a részecske méretétől az ülepedési sebességtől

Részecskék távozása az atmoszférából A nedves kicsapódásnak két változata ismert: a kimosódás a kihullás kondenzációs magképzőként Az első esetben: a részecskét a földfelszín irányába mozgó esőcsepp befogja és a levegő részecsketartalma jelentősen csökken, így csak a 0,1 μm < részecskék fogódnak be Második eset: 0,1 μm > (Aitken) részecskéket az esőcsepp előtt folyamatosan összetorlódó levegő ellöki a mozgó vízcsepp útjából A vízgőzzel túltelített légtérben heterogén kondenzációt indítanak el, így ezek a részecskék jelentős szerepet játszanak a felhő, illetve az eső képződésében. A részecskék távozása egy ködszemcse, majd egy esőcsepp kialakulásán keresztül valósul meg.

Részecskék hatása a növényzetre Fotoszintézis csökkentése: A levél felszínére ülepedő részecske csökkenti a besugárzást, így korlátozza a fotoszintézist. (Ez régebben különösen cementgyárak közelében volt megfigyelhető) A növények levelére rakódó és megkötődő toxikus anyag tartalmú por (növényvédő szer, nehézfémek) gyakran nem közvetlenül a növényt, hanem a növény felhasználóját veszélyezteti.

Részecskék hatása az emberre Az emberi szervezetbe bejutó részecskék lehetnek: önmagukban toxikusak tartalmazhatnak adszorbeált toxikus anyagokat A káros hatás jelentős mértékben méretfüggő. A 7 μm < részecskék Többségük már az orrban megkötődik vagy a légcső felső részein rakódik le. Ezen a részen a légcső falát borító csillószőrök a lerakódott részecskéket állandó mozgásuk segítségével a garatba továbbítják.

Részecskék hatása az emberre A 0,1-7 μm részecske tartomány: Veszélyes a tüdőre, mert eljutnak a légző rendszerünk legmélyebb pontjáig a léghólyagocskákig. A léghólyagocskákban nincs öntisztító mechanizmus, így az idáig lejutó és lerakódó részecske a léghólyagocska gázcserét biztosító membránjának felületén telepszik meg. A növekvő részecske fedettség csökkenő oxigénfelvételt eredményez, amely a szilikózis nevű betegség fő oka. A dohányzás okozta tüdőrákos megbetegedések is a léghólyagocskákban lerakódott karcinogén hatású PAH-ot is tartalmazó kátrány kondenzátum részecskék okozzák. Egy csésze fekete kávé vagy faszénen sült hús PAH koncentrációja nagyobb, mint a cigarettáé, de az emésztőrendszeren keresztül viszonylag gyorsan és teljes mértékben kiürülnek az emberi testből.

Részecskék hatása az emberre 0,1 μm> részecskék: Elérik a léghólyagocskákat, de ott nem ülepednek le, hanem ismét kilélegezzük őket . A szilikózisnál is veszélyesebb az azbesztózis: többféle rostos ásványi szilikát porának belélegzése miatt alakul ki, nemcsak oxigénfelvételi nehézséget, hanem rákos megbetegedést is okozhat. Az azbeszt elterjedését szilárd, hőálló, korrózióval szemben ellenálló rostos szerkezetének köszönheti, kiváló hőszigetelő, különösen alkalmas súrlódó betétek pl. fékbetétek előállítására, hőálló textíliák, épületek, csövek, födémek, kábelek, kemencék szigetelésére. Az azbeszt használatát veszélyessége miatt már minden fejlett országban betiltották, így egyre kevesebb környezetvédelmi problémát jelent.

Források: http://fold1.ftt.uni-miskolc.hu/~foldfj/fizgeol/4palya-felszin.htm http://www.fsz.bme.hu/mtsz/szakmai/tvok11.htm Dr. Bajnóczy Gábor előadásai (Alkalmazott kémia)