ARZÉN. 50 μg/L  10 μg/L A határérték meghatározása: Maximálisan megengedhető arzén bevitel: 2 μg arzén/kg/nap Átlagos 70 kg-os testtömeget feltételezve.

Slides:



Advertisements
Hasonló előadás
Nitrogén vizes környezetben
Advertisements

2010. július 8. Sopron Hidrológiai Társaság
Települési vízgazdálkodás I. 7.előadás
Pufferek Szerepe: pH stabilitás, kompenzálás, kiegyenlítés a külső hatásokkal szemben. Puffer rendszerek pH-ja jelentős mértékben „stabil”, kisebb mennyiségű.
Készítők: Hőgyes Endre Gimnázium és Szakközépiskola
Gáz-folyadék fázisszétválasztás
FERTŐTLENÍTÉS.
Víztisztítás ultraszűrésel
ADSZORPCIÓS TECHNOLÓGIÁK ALKALMAZÁSA A VÍZTISZTÍTÁSBAN
SZILÁRD/FOLYADÉK FÁZISSZÉTVÁLASZTÁSI TECHNOLÓGIÁK
Technológiai alapfolyamatok
Ammónium.
Ivóvíztisztítás Vízi Közmű és Környezetmérnöki Tanszék Laky Dóra.
Vízminőségi jellemzők
ARZÉN.
ARZÉN ELTÁVOLÍTÁSA IVÓVÍZBŐL
Vörösiszapok kezelése és hasznosítása
Kémiai szennyvíztisztítás
CITROMSAV FELDOLGOZÁSA
A membrántranszport molekuláris mechanizmusai
Szennyvízkezelés 1. előadás b,
Továbbfeldolgozási eljárások és technológiák
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
PTE Hulladékgazdálkodási Technológus Szak (FSZ)
Derítés.
Az elemek lehetséges oxidációs számai
Sav bázis egyensúlyok vizes oldatban
A talaj 3 fázisú heterogén rendszer
A szappanok káros hatásai
A szappanok káros hatásai
Szennyvíztisztítás Melicz Zoltán Egyetemi adjunktus
ADSZORPCIÓS TECHNOLÓGIÁK ALKALMAZÁSA A VÍZTISZTÍTÁSBAN
Ammónium.
ADSZORPCIÓ.
Tavak, tározók rehabilitációja
KÉMIAI KEZELÉS ALKALMAZÁSA A SZENNYVÍZTISZTÍTÁSBAN
Vízlágyítás.
ADSZORPCIÓ.
ARZÉN.
Ivóvíztisztítás Vízi Közmű és Környezetmérnöki Tanszék Laky Dóra.
Biológiai folyamatok az ivóvíztisztításban
Technológiai alapfolyamatok
FERTŐTLENÍTÉS.
Ammónium.
Vízlágyítás.
Koaguláció. Kolloid részecske és elektrosztatikus mezője Nyírási sík (shear plane): ezen belül a víz a részecskével együtt mozog Zéta-potenciál: a nyírási.
Koaguláció.
Gáz-folyadék fázisszétválasztás
Települési vízgazdálkodás
TALAJ KÉMIAI TULAJDONSÁGAI
OLDÓDÁS.
Uránszennyezés a Mecsekben
Vízfelhasználás minőségi követelményei
A terepi gyakorlat munkanaplószerű összefoglalása Gál Brigitta, III. éves környezetkutató hallgató Környezetföldtani gyakorlat 2004.
A Duna partján történt események röviden! Pillman Nikolett Schäffer Ivett.
SZILÁRD/FOLYADÉK FÁZISSZÉTVÁLASZTÁSI TECHNOLÓGIÁK
A Föld vízkészlete.
Települési vízkezelés ZeeWeed® az ivóvízkezelésben (magyar írásmóddal és mértékegységekkel kiegészítve - ÁF)
A levegőtisztaság-védelem fejlődése , Franciaország világháborúk II. világháború utáni újjáépítés  Londoni szmog (1952) passzív eljárások (end.
Vízlágyítás. Ca HCO 3 - Ca 2+ + H 2 O + CO 2 + CO 3 2- CaCO 3 képződés Túl sok CO 2 a vízben --> agresszív CO 2 Túl kevés CO 2 a vízben --> CaCO.
Koaguláció.
Kémiai reakciók Kémiai reakció feltételei: Aktivált komplexum:
ADSZORPCIÓ.
A biológiai és a kémiai szennyvíztisztítás szimbiózisa
BME Környezettechnika Szennyvíztisztítás membrántechnológiával MBR technológia MÉRETEZÉSEK Serény József.
VAS- ÉS MANGÁNTALANÍTÁS
Laky Dóra Ózon és ultraibolya sugárzás felhasználása ivóvíz fertőtlenítésre Konzulens: Dr. Licskó István Prof. Tuula Tuhkanen szeptember 25.
ARZÉN. 50 μg/L  10 μg/L A határérték meghatározása: Maximálisan megengedhető arzén bevitel: 2 μg arzén/kg/nap Átlagos 70 kg-os testtömeget feltételezve.
Próbaüzem tapasztalatai, gazdasági megfontolások
Analitikai számítások a műszeres analitikusoknak
Előadás másolata:

ARZÉN

50 μg/L  10 μg/L A határérték meghatározása: Maximálisan megengedhető arzén bevitel: 2 μg arzén/kg/nap Átlagos 70 kg-os testtömeget feltételezve  140 μg arzén/nap Biztonsági tényezők figyelembe vétele: 100 μg arzén/nap

100 μg arzén/nap Étel: μg arzén/nap Ivóvíz általi fogyasztás: 20 μg arzén/nap 2L-es átlagos ivóvízfogyasztást feltételezve 10 μg/L a maximálisan megengedhető arzén koncentráció ivóvízben

100 μg arzén/nap Étel: μg arzén/nap Ivóvíz általi fogyasztás: 70 μg arzén/nap 2L-es átlagos ivóvízfogyasztást feltételezve 30 μg/L maximális koncentráció az ivóvízben megengedhető lenne Magyarországon...

Arzén Határérték: Magyar:50 μg/L EU:10 μ g/L Előfordulás: anionos formában, tehát oldott állapotú anyag jelenik meg felszínalatti vizeinkben pH < 8,0 - H 3 AsO 3 As(III) pH < 6,0 - H 2 AsO 4 - pH > 6,0 - HAsO 4 2-

Az arzén eredete Ásványok: többnyire vas- és kéntartalmú ásványokban jelenik meg Az arzén felszín alatti vizeinkben vas és mangán vegyületekkel együtt fordul elő Adott körülmények között (például az ásványokban jelen lévő kén átalakulása miatt, a fémek és az arzén oldott állapotba kerülhetnek) Reduktív viszonyok között a vas, a mangán és az arzén oldott állapotú vegyületei stabilizálódnak

Kicsapási eljárások Oldékonyság: AlAsO g/L FeAsO g/L Az oxidált állapotú arzén vegyületek kicsapódása lényegesen hatékonyabb, mint a redukált vegyületeké. Fontos tehát az arzén vegyületek oxidálása. Redox potenciál:E 0 = 0,56 V Oxidálószerek:  Levegő oxigénje - nem elég erős  Mangándioxid (MnO 2 ), mangánoxi-hidroxid (MnO(OH) 2 )  Ózon  Klór

Adszorpció Lehetséges adszorbensek:  Aktivált alumínium-oxid  Vas(III)-oxi-hidroxid Membrántechnológiák

Az arzén eltávolítására szolgáló technológiák

Alkalmazott technológiaArzén-eltávolító mechanizmus Koaguláció és szilárd/folyadék fázisszétválasztás kicsapatás adszorpció koprecipitáció Aktivált alumínium-oxidon történő adszorpció adszorpció Granulált vas-hidroxidon történő adszorpció adszorpció Ioncserés eljárásspeciális adszorpció Meszes vízlágyítás során történő arzén eltávolítás adszorpció a csapadék felületén, koprecipitáció Membrán technológiáknyomás hatására történő szilárd/folyadék fázisszétválasztás Szűrés mangán zöldhomokon keresztül katalitikus oxidáció, majd ezt követően adszorpció

Alkalmazott technológiaArzén-eltávolító mechanizmus Koaguláció és szilárd/folyadék fázisszétválasztás kicsapatás adszorpció koprecipitáció Aktivált alumínium-oxidon történő adszorpció adszorpció Granulált vas-hidroxidon történő adszorpció adszorpció Ioncserés eljárásspeciális adszorpció Meszes vízlágyítás során történő arzén eltávolítás adszorpció a csapadék felületén, koprecipitáció Membrán technológiáknyomás hatására történő szilárd/folyadék fázisszétválasztás Szűrés mangán zöldhomokon keresztül katalitikus oxidáció, majd ezt követően adszorpció

Arzén eltávolítása koagulációval + szil/foly fázissztétválasztással Lépései: Oxidáció Koaguláció (szilárd formává történő átalakítás) Szilárd/folyadék fázisszétválasztás (ülepítés, szűrés)

Oxidáció: Klór Kálium-permanganát Ózon (szervesanyag jelenléte befolyásolja a hatékonyságot) Levegő oxigénje – nem elég erős

Arzén eltávolítása koagulációval + szil/foly fázissztétválasztással A szilárd formává való alakulás a következő lépések szerint történik (a vas- illetve alumínium sókkal végzett koaguláció során): precipitáció (kicsapatás): oldhatatlan AlAsO 4 illetve FeAsO 4 képződése koprecipitáció: az arzén beépülése az alumínium- illetve vas-hidroxid pelyhekbe adszorpció: az arzenát [As(V)] vegyületek adszorpciója a vas- illetve alumínium-hidroxid pelyhek felületén

Vas-hidroxid pelyhek adagolása Al-hidroxid pelyhek adagolása Koaguláció (Al) Koaguláció (FeCl 3 ) Szorbeálódott arzén móljainak száma / az adagolt vas vagy alumínium móljainak száma Az oldatban maradó egyensúlyi arzén-koncentráció (  M) Forrás: Edwards (1994) Az „előre létrehozott” pelyhek és az in-situ pehelyképződés hatékonyságának összehasonlítása

Vas-hidroxid pelyhek adagolása Al-hidroxid pelyhek adagolása Koaguláció (Al) Koaguláció (FeCl 3 ) Szorbeálódott arzén móljainak száma / az adagolt vas vagy alumínium móljainak száma Az oldatban maradó egyensúlyi arzén-koncentráció (  M) Forrás: Edwards (1994) Az „előre létrehozott” pelyhek és az in-situ pehelyképződés hatékonyságának összehasonlítása adszorpció+koprecipitáció+(precipitáció) adszorpció

koaguláns dózis Az eltávolítás hatékonyságát befolyásoló tényezők arzén oxidációs száma pH alkalmazott koaguláns

koaguláns dózis Az eltávolítás hatékonyságát befolyásoló tényezők arzén oxidációs száma pH alkalmazott koaguláns

As(V) előfordulása a pH függvényében As(III) előfordulása a pH függvényében Forrás: Fields et al. (2000)

As(V) előfordulása a pH függvényében As(III) előfordulása a pH függvényében Forrás: Fields et al. (2000)

koaguláns dózis Az eltávolítás hatékonyságát befolyásoló tényezők arzén oxidációs száma pH alkalmazott koaguláns

Az alkalmazott koaguláns szerepe: pH  7,0 esetén az alumínium- és vas koaguláns hatékonysága közel azonos (ha az adagolt mólok számát tekintjük), azonban magasabb pH értékeken vas-koaguláns adagolása célravezetőbb (Magyarországon a hálózatba bocsátott víz pH-ja > 7)

Vas-hidroxid pelyhek adagolása Al-hidroxid pelyhek adagolása Koaguláció (Al) Koaguláció (FeCl 3 ) Szorbeálódott arzén móljainak száma / az adagolt vas vagy alumínium móljainak száma Az oldatban maradó egyensúlyi arzén-koncentráció (  M) Forrás: Edwards (1994) Az „előre létrehozott” pelyhek és az in-situ pehelyképződés hatékonyságának összehasonlítása

koaguláns dózis Az eltávolítás hatékonyságát befolyásoló tényezők arzén oxidációs száma pH alkalmazott koaguláns

Koaguláns dózis: A 10 μg/L-es koncentráció eléréséhez 40-szeres Fe/As arány szükséges (mg/L értékeket figyelembe véve) (El-Bahadli, 2000)

Eltávolított As (%) FeCl3, ~ 200 µ g/L kezdeti As(V) koncentráció, mmol Fe3+/L Bopac, ~ 230 µ g/L kezdeti As(V) koncentráció, mmol Al3+/L

Technológiai sorok kialakítása

Cl 2 Fe(III)- flokk. Cl 2 gázmentesítés VITUKI – VÍZGÉPTERV által kidolgozott technológia (Kiss & Kelemen, 1985) Up-flow rendszerű szűrő mélységi szűrés

2HCO Ca(OH) 2 Ca CO H 2 O 2Ca CO CaCO 3 Mg 2+ + Ca(OH) 2 Mg(OH) 2 + Ca 2+ Vízlágyítás Ca(OH) 2 adagolásával

Vízlágyítás Na 2 CO 3 adagolásával 2Ca 2+ + Na 2 CO 3 CaCO 3 + Na +

Az arzén eltávolítása meszes vízlágyítás során: Adszorpció a keletkezett csapadék felületén Koprecipitáció: Mg(OH) 2 - ba történő beépülés

Cl 2 Fe(III)- Na 2 CO 3 vagy Ca(OH) 2 Cl 2 gázmentesítés vízlágyítás

Cl 2 Fe(III)- Ca(OH) 2 Cl 2 KMnO 4 gázmentesítés Vízlágyítás és pH szabályozás bedolgozott szűrőréteg (mangántalanítás)

vegyszerbekeverők puffer tartály flotálóutószűrő utó- fertőtlenítés nyers víz oxidálószer koagulálószer flokkulálószer fertőtlenítőszer ARZÉNMENTESÍTÉSI TECHNOLÓGIA VÁZLATA

Iszapkezelés lépései (Szeghalmi vízmű) : Ülepítő medence az ülepítés polielektrolit adagolásával történhet, amely az ülepedést gyorsítja Iszap átemelése a kondicionáló tartályba zeolit por adagolásával egyidejűleg Gépi víztelenítés (szűrőprés) A besűrített anyag konténerbe ürítése iszapkihordó csigával II. osztályú veszélyes hulladék; az elhelyezés feltétele min. 40 % szárazanyagtartalom  veszélyes hulladék lerakó

Iszapkezelés lépései (Dél-Bács-Kiskun megyei vízmű) : Ülepítő medence (10-15 óra tartózkodási idő) a felső fázis a települési csapadékcsatorna hálózatba kerül vagy visszavezetik a víztisztítási folyamat elejére Az iszap szárazanyag tartalma ülepítés után: 4-5 % Kaviccsal töltött (1-2 mm átmérőjű) drénezett szikkasztóágy tartózkodási idő: néhány nap Szikkasztás után a szárazanyag tartalom: 20 % Az iszapelhelyezés történhet betonba bedolgozással (?) vagy az aszódi veszélyes hulladék lerakóban

Alkalmazott technológiaArzén-eltávolító mechanizmus Koaguláció és szilárd/folyadék fázisszétválasztás kicsapatás adszorpció koprecipitáció Aktivált alumínium-oxidon történő adszorpció adszorpció Granulált vas-hidroxidon történő adszorpció adszorpció Ioncserés eljárásspeciális adszorpció Meszes vízlágyítás során történő arzén eltávolítás adszorpció a csapadék felületén, koprecipitáció Membrán technológiáknyomás hatására történő szilárd/folyadék fázisszétválasztás Szűrés mangán zöldhomokon keresztül katalitikus oxidáció, majd ezt követően adszorpció