Épületgépészet B.Sc., Épületenergetika B.Sc. 5. félév

Slides:



Advertisements
Hasonló előadás
Bemutatkozik a teljes AB-QM sorozat
Advertisements

Termálvizes fürdő bővítése
DE MFK Kar Épületgépészeti Szak
Energia- és költségcsökkentési lehetőségek az egészségügyi szektorban
Hoval nap május 19.- Budapest
Quantum tárolók.
Dr. Balikó Sándor ENERGIAGAZDÁLKODÁS 9. Hőhasznosítás.
Hőszállítás Épületenergetika B.Sc. 6. félév március 16.
Áramlástani szivattyúk 2.
Hőközpont szétválasztás elemzése, pályázati tapasztalatok KEOP
Energiaellátás Hőellátás.
Energiaellátás Hőellátás.
4.A fogyasztások elemzése
Villamosenergia-termelés (és elosztás) Dr
Villamosenergia-termelés
1. Energiagazdálkodási rendszermodell
Vízgőz, Gőzgép.
Levegő-levegő hőszivattyú
Energiaszállítás készítette: Dékány Eszter
AZ IPARI HŐCSERE ALKALMAZÁSAI, BEPÁRLÓK ÉS SZÁRÍTÓK
Halmazállapot-változások
LAKATOS TIBOR KORONCZAI GYÖNGYI Eger, május 18. Biomassza, biog á z felhaszn á l á sa a t á vfűt é sben, p á ly á zati lehetős é gek.
EU csatlakozás tükrében (fejlesztések támogatással)
PÉLDÁK AKTUÁLIS GAZDASÁGI ÉS MŰSZAKI MEGOLDÁSOKRA A TÁVHŐ JÖVŐJE, VERSENYKÉPESSÉGE JAVÍTÁSA ÉRDEKÉBEN LAKATOS TIBOR KORONCZAI GYÖNGYI Pécs, május.
Dr. Balikó Sándor: ENERGIAGAZDÁLKODÁS 9. Fejlesztések.
A Pinch-Point módszer alkalmazása a hőhasznosításban
Dr. Balikó Sándor: ENERGIAGAZDÁLKODÁS 1. Az energia, mint érték.
ENERGIAGAZDÁLKODÁS 6. Energia és költségmegtakarítás tárolással dr. Balikü Sándor:
Hőigények meghatározása Hőközpontok kialakítása
Hőigények meghatározása (feladatok) Hőközpontok kialakítása
Gunkl Gábor – 2009 – BME Westinghouse AP1000. Áttekintés  Felépítés Konténment Primer köri jellemzők Turbogenerátor Névleges adatok  Biztonság Passzív.
Hőszállítás Épületenergetika B.Sc. 6. félév február 16.
Hőszállítás Épületenergetika B.Sc. 6. félév március 30.
Távhőrendszerek hőforrásai Hőigények meghatározása Hőszállítás Épületenergetika B.Sc. 6. félév 2009 február 23.
Hőszállítás Épületenergetika B.Sc. 6. félév március 23.
Hőigények aránya Csőben áramló közeg nyomásveszteségének számítása
Épületgépészet B.Sc., Épületenergetika B.Sc.
Épületgépészet B.Sc., Épületenergetika B.Sc.
Hőigények meghatározása Hőközpontok kialakítása
Összefoglalás a 2. zárthelyihez Hőszállítás Épületgépészet B.Sc. 5. félév; Épületenergetika B.Sc. 5. (6.) félév november 16.
Összefoglalás a 2. zárthelyihez Hőszállítás Épületgépészet B.Sc., Épületenergetika B.Sc. 5. félév november 11.
Épületgépészet B.Sc. 5. félév; Épületenergetika B.Sc. 5. (6.) félév
Csőben áramló közeg nyomásveszteségének számítása
Hőszállítás Épületenergetika B.Sc. 6. félév március 9. ISMÉTLÉS.
Hőszállítás Épületgépészet B.Sc. 5. félév; Épületenergetika B.Sc. 5. (6.) félév október 8. ISMÉTLÉS.
Épületgépészet B.Sc. 5. félév; Épületenergetika B.Sc. 5. (6.) félév
Az elemzés és tervezés módszertana
GÉPÉSZETI RENDSZEREK avagy HOGYAN LEGYÜNK PROFI GÉPÉSZEK 1 ÓRA ALATT.
Az üzleti rendszer komplex döntési modelljei (Modellekkel, számítógéppel támogatott üzleti tervezés) II. Hanyecz Lajos.
Vállalati szintű energia audit
11 Ausfällungen Injektionsbrunnen Sótartalom mint kihívás mindenek előtt hidrogén-karbonátos kicsapódások.
Decentralizált energiaellátás
Csővezetékek.
CAD programok jellemzői
Távfűtési fogadó hőközpontok felépítése és szabályozása Energetikai Gépek és Rendszerek Tanszék.
Egy-, kétcsöves fűtések méretezése, korszerűsítése
A 7/2006 (V.24.) TNM rendelet várható következményei a távhőszolgáltatásban "Legújabb fejlesztések a hazai távhőszolgáltatásban – 2007" Regionális távhőkonferencia.
Building Technologies / HVP1 Radiátoros fűtési rendszerek beszabályozása s ACVATIX TM MCV szelepekkel SIEMENS hagyományos radiátorszelepek SIEMENS MCV.
Optimális hőmérséklet-menetrend Esettanulmány: épületenergetikai korszerűsítés Fűtési rendszerekben jelentkező gravitációs hatások Épületüzemeltetés Épületenergetika.
1 Távhő és energiastratégia ‘Sigmond György főtanácsos Budapesti Műszaki és Gazdaságtudományi Egyetem december 7. MaTáSzSz Magyar Távhőszolgáltatók.
M.Sc. Épületgépészeti képzés III. félév Vízellátás, csatornázás, gázellátás október 4., október 11. Használati melegvíz termelők kapcsolásai Cirkilációs.
M.Sc. Épületgépészeti képzés III. félév Vízellátás, csatornázás, gázellátás február 22., 29. Használati melegvíz termelők kapcsolásai.
0 Tervezési folyamatban megjelenő trendek, tendenciák. ( Felület hűtő-fűtő rendszerek ) „Koncepció választás”, a kiviteli terv készítése előtt döntés előkészítés.
A változó tömegáramú keringetés gazdasági előnyei Távhővezeték hővesztesége Kritikus hőszigetelési vastagság Feladatok A hőközponti HMV termelés kialakítása.
Folyadék áramlási nyomásveszteségének meghatározása Feladatok Jelleggörbe szerkesztés A hőellátó rendszer nyomásviszonyai (Hidraulikai beszabályozás) Hőszállítás.
Levegőellátás - a levegő tulajdonságai, a sűrített levegő előállítása,
Hőszállítás Épületgépészet B.Sc.; Épületenergetika B.Sc. 5. félév szeptember 25. Távhőrendszerek hőforrásai A távhőellátás versenyképesége Budapest.
Szelep választása hőcserélő tömegáram- szabályozásához Épületüzemeltetés, Készítette: Garamvári Andrea Czétány László Petróczi Zsolt.

Előadás másolata:

Épületgépészet B.Sc., Épületenergetika B.Sc. 5. félév A menetrend meghatározása Gazdaságos csőátmérő Távhőrendszer tervezése Távhőrendszer optimális üzeme Gőz hőhordozó közegű távhőellátó rendszerek Feladatok Hőszállítás Épületgépészet B.Sc., Épületenergetika B.Sc. 5. félév 2009. november 11.

Radiátorok hőleadása (állandó tömegáram esetén)

Szekunder menetrend

Állandó tömegáramú primer menetrend

Állandó tömegáramú menetrend

Vegyes (változó és állandó tömegáramú hőközpontokat kiszolgáló) rendszer

Változó tömegáramú hőközpont Automatikus soros-párhuzamos kapcsolású hőközpont

Gazdaságos csőátmérő A vezetéket egy bizonyos élettartamra létesítik. Célunk az élettartamra eső költségek minimalizálása. A költségek a beruházási és üzemeltetési költségekből állnak. A beruházási költségek a csőátmérővel arányosak: K1 ~ C1d Az üzemeltetési költségek a szivattyú teljesítményével arányosak. A szivattyúzási teljesítmény:

A szivattyú emelőmagassága megegyezik a hálózat nyomásveszteségével: ezzel: A teljes élettartamra vetített költségek:

Forróvizes távhőellátó rendszer komplex tervezése A tervezés főbb lépései: az ellátandó mértékadó hőigények meghatározása a rendszer típusának elemzése és kiválasztása a hőforrás típusának megválasztása a hálózat nyomvonalának és a vezetéktípusnak a kiválasztása a távhőellátó rendszer mértékadó hidraulikai és termikus paramétereinek kiválasztása mind a primer, mind a szekunder rendszerben az előremenő vízhőmérséklet te a visszatérő vízhőmérséklet tv keringetett forróvíz tömegáram, illetve térfogatáram a betáplálási nyomáskülönbség ennek eszközei heurisztikus módszerek parciális optimalizációk komplex optimalizáció

a nyomásábra meghatározása, a nyomástartás típusának kiválasztása a hidraulikai analízis végrehajtása a mértékadó hidraulikai állapotra és a közbenső üzemállapotokra a nyomásábra meghatározása, a nyomástartás típusának kiválasztása a keringetés rendszerének kiválasztása a hőközpont típusának és kapcsolásának kiválasztása a szabályozórendszerek kiválasztása a biztonsági filozófia primer és szekunder szabályozás a részletes gépészeti tervezés fogyasztói berendezések hőközpontok primer és szekunder vezetékrendszer hőforrás primer és szekunder keringetés nyomástartás

Távhőellátó rendszer optimális üzemviteli paramétereinek meghatározása

Fontosabb következtetések Az optimális primer menetrend meghatározásával beruházás nélkül nyílik lehetőség a költségek csökkentésére. Az optimális primer menetrend megvalósításának eszközei a megfelelő változó tömegáramú rendszerekben rendelkezésre állnak. Ha ismerjük a hő költségét a primer tömegáram és előremenő hőmérséklet függvényében leíró összefüggést, az optimális primer menetrend kapcsoltan termelt hő esetében is meghatározható. Az optimális primer menetrend meghatározásához többféle módszer is alkalmazható. A megfelelő módszert a rendszer kialakítása és a rendelkezésre álló adatok alapján kell megválasztani.

Gőz hőhordozó közegű távhőellátó rendszerek A víz telítési nyomása és párolgáshője 0°C 0,0061112bar 2501,0 kJ/kg 100°C 1,0132 bar 2257,3 kJ/kg 105°C 1,205 bar 2248,9 kJ/kg 120°C 1,9854bar 2202,9 kJ/kg 180°C 10,003 bar 2014,0 kJ/kg 200°C 15,551 bar 1939,0 kJ/kg 300°C 85,917 bar 1403,1 kJ/kg 374,15°C 221,2 bar 0 kJ/kg

A gőz távhővezetékrendszer alkalmazásának előnyei és hátrányai Előnyök nagyobb az 1 kg közeggel szállítható hőmennyiség wcső=20-50 m/s → adott vezetékmérettel nagyobb hőáram szállítható (nagyobb Δp mellett) a jobb hőátadási tényező miatt kisebb hőátadó felület szükséges Hátrányok a kondenzkezelés nehézségei → bonyolult rendszerkialakítás magas közeghőmérséklet kis hőigény esetén is → nagy hőveszteség igényes vízkezelés, jelentős vízveszteségek → jelentős vízkezelési költségek üzemeltetési nehézségek; a vizes rendszereknél nagyobb korróziós kockázat

Kondenzvezeték ▬► 139 liter sarjúgőz p = 8 bar → 0,5 bar 0,12 kg/kg sarjúgőz 1,16 m3/kg 0,88 kg/kg kondenzátum 0,00105 m3/kg ▬► 139 liter sarjúgőz 0,92 liter kondenzátum 99,4 tf% sarjúgőz 0,6 tf% kondenzátum! (A kondenzvezeték lényegében nagyvíztartalmú nedves gőz szállító vezeték!)

Gőz távvezeték kialakítása

Gőzvezeték víztelenítése

Sarjúgőz hasznosítás

Nyomáscsökkentő szelep kialakítása

Hőcserélő szabályozása

Feladatok Változó tengerszint feletti magasságon lévő területet ellátó távhővezeték nyomásdiagramja Távfűtött lakóépület méretezési hőigényének becslése az éves hőfelhasználás alapján

2. fűtési idény hőfogyasztás hőfokhíd 2003-2004 1742,7 3041,5 GJ/év hőfokhíd °Cnap 2003-2004 1742,7 3041,5 2004-2005 1822,9 2919,7 2005-2006 1944,9 3024,2 2006-2007 1572,0 2540,5 2007-2008 1813,1 2804,0

Konfidencia intervallum: 20003-2004 2004-2005 2005-2006 2006-2007 2007-2008 218,8 238,5 245,6 236,3 247,0 átlag: 237,3 kW szórás: 11,27 kW Konfidencia intervallum: 95%: 229,0÷243,9 kW

Köszönöm a figyelmet!