Matematikai statisztika Készítették: Miskoltzy Judit Sántha Szabina Szabó Brigitta Tóth Szabolcs Török Tamás.

Slides:



Advertisements
Hasonló előadás
Hipotézis-ellenőrzés (Statisztikai próbák)
Advertisements

A pedagógiai kutatás módszertana
I. előadás.
Kvantitatív Módszerek
Ozsváth Károly TF Kommunikációs-Informatikai és Oktatástechnológiai Tanszék.
Gazdaságelemzési és Statisztikai Tanszék
Kvantitatív módszerek
Gazdaságelemzési és Statisztikai Tanszék
Matematikai Statisztika VIK Doktori Iskola
Összefüggés vizsgálatok
14. hét: A minőségfejlesztést segítő technikák II.
Gazdaságelemzési és Statisztikai Tanszék
STATISZTIKA II. 5. Előadás Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék.
Statisztika II. IX. Dr. Szalka Éva, Ph.D..
Regresszió és korreláció
E L E M Z É S. 1., adatgyűjtés 2., mintavétel (a teljes sokaságot ritkán tudjuk vizsgálni) 3., mintavételi információk alapján megállapítások, következtetések.
Statisztika II. IV. Dr. Szalka Éva, Ph.D..
Statisztika II. V. Dr. Szalka Éva, Ph.D..
Ozsváth Károly TF Kommunikációs-Informatikai és Oktatástechnológiai Tanszék.
III. előadás.
Vállalkozások pénzügyi-számviteli mutatói
Kérdések a ZH-hoz.
Mezőgazdasági szaktanácsadás online támogatással: on-line benchmarking tesztüzemi adatok alapján Területválasztási szaktanácsadás tesztüzemi,illetve szimulációs.
Növényökológia terepgyakorlat Fajok asszociáltságának vizsgálata I.) Az egyes esetek TAPASZTALT gyakorisága 1. táblázat A faj B faj+- +aba+b.
Statisztika II. VIII. Dr. Szalka Éva, Ph.D..
Kvantitatív módszerek
Kvantitatív módszerek 8. Hipotézisvizsgálatok I. Nemparaméteres próbák Dr. Kövesi János.
A statisztikai próba 1. A munka-hipotézisek (Ha) nem igazolhatók közvetlen úton Ellenhipotézis, null hipotézis felállítása (H0): μ1= μ2, vagy μ1- μ2=0.
Matematikai statisztika Készítették: Miskoltzy Judit Sántha Szabina Szabó Brigitta Tóth Szabolcs Török Tamás.
Matematikai statisztika Készítették: Miskoltzy Judit Sántha Szabina Szabó Brigitta Tóth Szabolcs Török Tamás Marketing Msc I. évf., I. félév, levelező.
Matematikai statisztika Készítették: Miskoltzy Judit Sántha Szabina Szabó Brigitta Tóth Szabolcs Török Tamás Marketing Msc I. évf., I. félév, levelező.
Kvantitatív Módszerek
Kvantitatív módszerek
EREDMÉNYEK, ADATOK FELDOLGOZÁSA
Gazdaságstatisztika 16. előadás Hipotézisvizsgálatok Alapfogalamak
Nyereség, fedezetei pont fedezeti hozzájárulás
Hipotézis-ellenőrzés (Folytatás)
A sztochasztikus kapcsolatok (Folyt). Korreláció, regresszió
t A kétoldalú statisztikai próba alapfogalmai
IV. Terjeszkedés 2..
Hipotézisvizsgálat v az adatforrás működési “mechanizmusát” egy véletlen eloszlás jellemzi v az adatok ismeretében megfogalmazódnak bizonyos hipotézisek.
Paleobiológiai módszerek és modellek 4. hét
I. előadás.
Valószínűségszámítás - Statisztika. P Két kockával dobunk, összeadjuk az értékeket Mindegyik.
A kombinációs táblák (sztochasztikus kapcsolatok) elemzése
Petrovics Petra Doktorandusz
Bevezetés a Korreláció & Regressziószámításba
Vargha András KRE és ELTE, Pszichológiai Intézet
HIPOTÉZIS MEGFOGALMAZÁSA
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Regresszió-számítás március 30. Dr. Varga Beatrix egyetemi.
Korreláció-számítás.
A számítógépes elemzés alapjai
Vállalkozások pénzügyi-számviteli mutatói. 1. Likviditási mutatók Arányszámok, amelyek a rövid lejáratú kötelezettségek likvid eszközökkel való fedezettségét.
Gazdaságstatisztika Gazdaságstatisztika Korreláció- és regressziószámítás II.
Menedzsment és vállalkozásgazdaságtan dr. Sz abó G ábor Cs aba
A számítógépes elemzés alapjai
Paraméteres próbák- gyakorlat
Korreláció, regresszió
Kiváltott agyi jelek informatikai feldolgozása 2016
Hipotézisvizsgálatok általános kérdései Nemparaméteres próbák
II. előadás.
Nemparaméteres próbák
Hipotézisvizsgálatok Paraméteres próbák
VÁLLALKOZÁSI FORMÁK Mi szükséges egy üzleti vállalkozás sikeréhez?
Dr. Varga Beatrix egyetemi docens
Statisztika segédlet a Statistica programhoz Új verzióknál érdemes a View menüsor alatt a Classic menu-s verziót választani – ehhez készült a segédlet.
2. Regresszióanalízis Korreláció analízis: milyen irányú, milyen erős összefüggés van két változó között. Regresszióanalízis: kvantitatív kapcsolat meghatározása.
Dr. Varga Beatrix egyetemi docens
1.3. Hipotézisvizsgálat, statisztikai próbák
Előadás másolata:

Matematikai statisztika Készítették: Miskoltzy Judit Sántha Szabina Szabó Brigitta Tóth Szabolcs Török Tamás

Bevezetés Vállalkozás pénzügyi elemzése –Cash flow kimutatás (pénzáramlás) –Fedezeti pont számítás (árbevétel = ktg) –Statisztikai számítások 77 db véletlenszerűen kiválasztott cég teljes körű vizsgálata

Viszonyszámok Cash-flow és fedezeti pont használata

Viszonyszámok

Leíró statisztika

Korrelációelemzés 1/2 Két folytonos változó közötti asszociációt méri korrelációs együttható(r) Átlagos állományi létszám vállalati eszközérték r = 0, gyenge, pozitív kapcsolat Korrelációs együttható négyzete r 2 =0,07 megmutatja, hogy a létszámban bekövetkező változás hány %-ban befolyásolja a vállalat eszközértékét Ábrázolás: szóródási diagrammal, mely X; Y változó kapcsolatát szemlélteti A korrelációs számítás legfontosabb szabálya: a szignifikáns korreláció nem jelent ok-okozati kapcsolatot

Korrelációs mátrix: 5 negatív kapcsolat Legszorosabb pozitív irányú kapcsolatLegszorosabb pozitív irányú kapcsolat: fedezeti pontszámítás használata és hasznossági megítélése között van Korrelációelemzés 2/2 Használják- e:cash-flow kimutatás Használják- e:fedezeti pont számítás Hasznos-e:cash- flow kimutatás Hasznos- e:fedezeti pont számítás A váll évi átl. állományi létszáma(fő) A váll. mérete eszközérték szerint(2003.dec.31. ezerFt) Használják-e:cash- flow kimutatás1 Használják- e:fedezeti pont számítás0, Hasznos-e:cash- flow kimutatás0, , Hasznos- e:fedezeti pont számítás-0, , , A váll évi átl. állományi létszáma(fő)0, , , , A váll. mérete eszközérték szerint(2003.dec.3 1. ezerFt)0, , , , ,

Hipotézisvizsgálat 1/2 1. Hipotézis: a fedezeti pont számítást használó és nem használó vállalatok eszközérték szerinti mérete egyforma. 2. F-teszt a szórásra → Új hipotézis: a fedezeti pont számítást használók és nem használók vállalati méretének (eszközérték szerint) szórása azonos. 3. Leíró statisztika alkalmazása annak megállapítására, hogy a fedezeti pont számítást nem használók vagy használók szórása a nagyobb. → fedezeti pont számítást nem használók vállalati méretének (eszközérték szerint) nagyobb a szórása

Hipotézisvizsgálat 2/2 4. F-teszt elvégzése: F=31,9 P= 0, Kritikus és elfogadási tartomány : Tehát a nullhipotézist semmilyen szignifikancia szinten nem tudjuk elfogadni. A fedezeti pont számítást használók és nem használók vállalati méretének (eszközérték szerint) szórása nem egyezik meg. 5. Kétmintás t próba, nem egyenlő szórásnégyzettel: t=0,89 P=0,3847 Kritikus és elfogadási tartomány: Tehát a nullhipotézist 38,5%-os szignifikancia szintig elfogadjuk.