3. Gyorsítók.

Slides:



Advertisements
Hasonló előadás
W  és Z 0 bozonokatkeresünk az LHC CMS detektorában. A nagyon szerencsések pedig akár egy Higgs-jelölttel is találkozhatnak! Remélem izgalmas kaland.
Advertisements

Az anyagszerkezet alapjai
A Föld helye a Világegyetemben. A Naprendszer
Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 1/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári.
2. Kölcsönhatások.
1 Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium CERN: Tudomány és technológia gyorsítója.
2010. augusztus 16.Hungarian Teacher Program, CERN1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by OTKA MB
Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium Bemutatkozik a CERN 05 Novembre 2003.
SO 2, NO x felbontási hatásfokának vizsgálata korona kisülésben Horváth Miklós – Kiss Endre.
A NAPRENDSZER ÁTTEKINTÉSE.
Gigamikroszkópok Eszközök az anyag legkisebb alkotórészeinek megismeréshez Trócsányi Zoltán.
2. Kölcsönhatások.
Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 1/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári.
Pozitron annihilációs spektroszkópia
A mikrorészecskék fizikája 2. A kvarkanyag
Orvosi képfeldolgozás
A Föld helye a világegyetemben
TRANSZMISSZIÓS ELEKTRONMIKROSZKÓP (TEM)
Dr. Csurgai József Gyorsítók Dr. Csurgai József
Magfúzió.
LHC – a harmadik évezred részecskefizikája Vesztergombi György Paks Május 31.
3. Gyorsítók CERN(Genf): légifelvétel. A gyorsító és a repülőtér.
Következik a Z-bozonnal történő részletes ismerkedés. Ez lesz a délutáni méréseik tárgya is ! Most igazán tessék figyelni és bátran kérdezni is ! Lesz.
Ezt a frekvenciát elektron plazmafrekvenciának nevezzük.
1 A napszélben áramló pozitív töltésű részecskék energia spektruma.
6. Nemzetközi Részecskefizikai Diákműhely MTA KFKI Részecske- és Magfizikai Kutatóintézet (RMKI) Budapest, március 3. A rendezvény szervezői:
2. Kölcsönhatások Milyen „kölcsönhatásokra” utalnak a képen látható jól ismert események? A nagyon „tudományos” elnevezésük: Gravitációs Elekromágneses.
2. Kölcsönhatások.
Most pedig jöjjön a mai napunk sztárja: a J/  részecske!
Energia Energia: Munkavégző képesség Különböző energiafajták átalakulhatnak Energiamegmaradás: zárt rendszer energiája állandó (energia nem vész el csak.
Mit tudunk már az anyagok elektromos tulajdonságairól
Veszprémi Viktor ATOMKI, Debrecen Supported by OTKA MB
Veszprémi Viktor Wigner Fizikai Kutatóközpont OTKA NK81447
Kérdésekre válaszok Zoltán Fodor KFKI – Research Institute for Particle and Nuclear Physics CERN.
Gáztöltésű detektorok Szcintillátorok Félvezetők
Az atom szerkezete Készítette: Balázs Zoltán BMF. KVK. MTI.
Bemutatjuk a híres/fontos W  és Z 0 Bozonokat Sheldon Glashow Steven WeinbergAbdus Salam Ők jósolták meg elméletileg. Nobel díj: 1979 Ők pedig felfedezték.
2. Kölcsönhatások.
ALAPVETŐ KÖLCSÖNHATÁSOK
Csillagászati földrajz
sugarzaserzekelo eszkozok
A betatron Az időben változó mágneses tér zárt elektromos erővonalakat hoz létre. A térben indukált feszültség egy ott levő töltött részecskét (pl. elektront)
Van de Graaff-generátor
Teachers Programme, CERN, aug Bevezetés a nehézion-fizikába (Introduction to heavy ion physics) Veres Gábor (CERN-PH.
W  és Z 0 bozonokatkeresünk az LHC CMS detektorában.
2. Kölcsönhatások.
Röntgen cső Anód feszültség – + katód anód röntgen sugárzás
Atom - és Elektronpályák
W  és Z 0 bozonokatkeresünk az LHC CMS detektorában. A nagyon szerencsések pedig akár egy Higgs-jelölttel is találkozhatnak! Remélem izgalmas kaland.
Üreges mérőhely üreg kristály PMT Nincs kollimátor!
Készítette: Móring Zsófia Samu Gyula
Készült a HEFOP P /1.0 projekt keretében
A mozgás egy E irányú egyenletesen gyorsuló mozgás és a B-re merőleges síkban lezajló ciklois mozgás szuperpoziciója. Ennek igazolására először a nagyobb.
A kvantum rendszer.
PPKE-ITK I.Házi Feladat Megoldásai Matyi Gábor Október 9.
Máté: Orvosi képfeldolgozás5. előadás1 Mozgó detektor: előnyHátrány állójó időbeli felbontás nincs (rossz) térbeli felbontás mozgójó térbeli felbontás.
Az atommag alapvető tulajdonságai
05 Novembre év a részecskefizika kutatásban Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium.
Úton az elemi részecskék felé
Máté: Orvosi képfeldolgozás1. előadás1 A leképezés tárgya Leképezés Képfeldolgozás Felismerés Leletezés Diagnosztizálás Terápia Orvosi képfeldolgozás Minden.
Teachers Programme, CERN, aug Bevezetés a nehézion-fizikába (Introduction to heavy ion physics) Veres Gábor (CERN-PH.
Elektromosság 2. rész.
RÖNTGENSUGÁRZÁS.
3. Gyorsítók CERN(Genf): légifelvétel. A gyorsító és a repülőtér.
Gyorsítók Veszprémi Viktor ATOMKI, Debrecen
I. Az anyag részecskéi Emlékeztető.
Optikai mérések műszeres analitikusok számára
W és Z0 bozonokat keresünk az LHC CMS detektorában.
Optikai mérések műszeres analitikusok számára
RASZTERES ADATFORRÁSOK A távérzékelés alapjai
Előadás másolata:

3. Gyorsítók

CERN(Genf): légifelvétel. A gyorsító és a repülőtér

Gyorsító minden háznál található… (a „klasszikus” TV) és azonos elven épülnek az óriásgyorsítók is. A katód és anód közti nagy elektromos térrel gyorsítjuk fel a katódból kilépő elektronokat A széttartó elektron nyalábot fokuszáló mágnesekkel keskeny nyalábbá húzzuk össze Az eltérítő mágnesekkel szabályozzuk a nyalább útját

Rakjunk össze sokat sorba: Lineáris gyorsítók! Nagy energiát akarunk? Rakjunk össze sokat sorba: Lineáris gyorsítók! Nagyon hosszúak? Takarékosabb ha körbe rakjuk őket. Görbítsük el hát az egyenest (de vannak azért „lineárisak” is)

és futassuk körbe a részecskéket sokszor így körönként is növelhetjük az energiájuk majd ütköztessük őket szembe (Collider = ütköztető) e + - Bemenő nyalábok Ütköztetési pontok Vákum-cső Nagyfrekvenciás gyorsító tér Fokuszáló mágnes Eltérítő

Álló céltárgy vagy frontális ütközés?

A Nagy Hadronütköztető Large Hadron Collider (LHC) CERN A Nagy Hadronütköztető Large Hadron Collider (LHC)

Az LHC alulnézetben Lyon Large Hadron Collider (LHC)  27 km 

Az LHC 4 nagy detektora: ATLAS, CMS, LHCb és ALICE 18. Dezember 2009 BG5 Rainergasse 9 9

Pillantás az alagútba

Energiák az LHC-ben Jelenleg 1-1 proton energiája 3.5 TeV (3.5*1012 eV) A csúcs 7 TeV lesz. Hétköznapi energiákra lefordítva 1 proton energiája annyi mint a képen látható repülő szúnyogé DE: A gyűrűben keringő nagyszámú proton teljes energiája annyi mint 100 db. 40 km/óra sebességgel száguldó elefántcsordáé! Tessék még azt is elképzelni, hogy a protonnyaláb átmérője kisebb mint egy tű foka (0.03 mm!)

4. Detektorok Vannak tehát gyors, nagy energiájú részecskéink, ütköztetjük is öket, de szeretnénk „látni”, MÉRNI, mi is történik egy ilyen hatalmas energiájú ütközésben Ehhez kellenek a…. 4. Detektorok

Láthatóvá és mérhetővé tenni a „láthatatlant”: Detektorokkal a részecskék „nyomában” 1. Nyomdetektorok („tracker”). Az ütközési pont (vertex) közelében, erős mágneses térben helyezkednek el és igen finom térbeli felbontást (~10 mikron, a hajszál ötöde!) tesznek lehetővé a (töltött) részecskék pályának nagyon pontos meghatározására. Ennek ismeretében a részecske lendületére (impulzus) és töltésére következtetünk. Sok fajtájuk van A fejlődés gyors: újabb és újabb tipusokat fejlesztenek ki ezért csak a jellemző funkcióik szerint mutatom be őket. 2. Kaloriméterek. Ezek a vertextől távolabb, a részecskék energiáját mérik. (a vertextől távol a részecskesűrüség kisebb, térbeli felbontásuk is gyengébb lehet) Két fő tipusuk van: a. Elektromágnes Kaloriméter (ECAL).: a fotonok és elektronok mérésére b. Hadronikus Kaloriméter (HCAL): a hadronok (proton/neutron/pi-mezon mérésére.

Miért kell a nyomdetektorunkat erős mágneses térrel körbefogni? A mágneses tér a töltött részecskét körpályára kényszeríti. A pálya sugarából (R) a részecske lendülete (impulzusa) és töltése meghatározható. (nagy Rnagy impulzus; görbület irányatöltés előjele) Fontos! Tessék megjegyezni! Az ütközési tengely körül több, finom felbontású koncentrikus henger-réteget helyezünk el. A pixel detektor és a pályán „érintett” lapocskák. Egy-egy szilícium „lapocska” (pixel) mérete 100*100 mikron (~1 vastag hajszál!) Ezek az átfutó részecskéket elektromos impulzusok formájában jelzik és ezt „regisztrálja” a bonyolult kiovasó elektronika..

Kaloriméterek a részecske energiáját kiszámíthatjuk. Sűrű, szilárd anyagokban a részecskék sorozatos kölcsönhatásaik révén újabb részecskéket („lavinákat”) keltenek és végül teljes energiájukat elvesztik. A részecske-lavinák mérhető jeleket váltanak ki a kaloriméterekben (fotonok:fény/elektromos impulzusok) melyben a jelek nagysága/erőssége arányos a „leadott” energiával. Ezeket összegezve a részecske energiáját kiszámíthatjuk. Elektromágneses (ECAL) kaloriméter Hadronikus kaloriméter (HCAL) Fotonok és elektronok energiájának mérésére Hadronok (proton, pi-mezon)… energiáját méri Cellás/réteges szerkezetük révén az egyes részecskék jelei elkülöníthetők egymástól

Most már mindent tudunk a detektorokról: építsünk hát egy mindent tudó kísérleti mérőrendszert ! Legyen benne: 1.Nyomdetektor: a töltött részecskék pályájáinak jelzésére 2.Kaloriméterek az energiák mérésére 2a. ECAL:foton, elektron 2b. HCAL: hadronok (proton, pi-mezon, stb.) 3. És Müon-detektor. (a müon dtektor is nyomdetektor, kisebb felbontással) Mindezeket helyezzük erős mágneses térbe (szupavezető). Ezek a lakóháznyi óriások 5-15 000 (!) tonnát nyomnak

HCAL Tracker ECAL Magnet Nézzük meg hát most a mi CMS detektorunkat (CMS: Compact Muon Solenoid) HCAL Muon chambers Tracker ECAL Magnet Adatai: súlya 12.5 tonna, hossza 21 méter, átmérője 15 méter

Toljuk most egybe az egészet és gyönyörködjünk benne Teljes összeállítása már a föld alatt történt, ott igazi fotó készítésére már nem volt hely

Még egy utolsó pillantás kedvenc CMS detektorunkra (itt most egy szeletkét láthatunk részletesebben)

izgalmas dolgokkal fogunk még megismerkedni NOT Kis türelem és izgalmas dolgokkal fogunk még megismerkedni

W/Z Következnek a részecskék. Ők lesznek a mai mérésünk tárgyai és természetesen a CMS detektorral fogjuk alaposan megvizgálni.