III. előadás.

Slides:



Advertisements
Hasonló előadás
Nevezetes eloszlások, normál eloszlás
Advertisements

I. előadás.
II. előadás.
Kvantitatív Módszerek
Kvantitatív módszerek
Statisztika feladatok Informatikai Tudományok Doktori Iskola.
Csoportosítás megadása: Δx – csoport szélesség
Becsléselméleti ismétlés
STATISZTIKA II. 5. Előadás Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék.
Statisztika II. IX. Dr. Szalka Éva, Ph.D..
Statisztika II. VI. Dr. Szalka Éva, Ph.D..
Regresszió és korreláció
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Statisztika II. V. Dr. Szalka Éva, Ph.D..
Lineáris korreláció és lineáris regresszió. A probléma felvetése y = 1,138x + 80,778r = 0,8962.
Regresszióanalízis 10. gyakorlat.
Nem-paraméteres eljárások, több csoport összehasonlítása
Dr. Szalka Éva, Ph.D.1 Statisztika II. VI.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Kvantitatív módszerek
Budapesti Műszaki és Gazdaságtudományi Egyetem
Az Alakfelismerés és gépi tanulás ELEMEI
Nemparaméteres próbák Statisztika II., 5. alkalom.
A statisztikai próba 1. A munka-hipotézisek (Ha) nem igazolhatók közvetlen úton Ellenhipotézis, null hipotézis felállítása (H0): μ1= μ2, vagy μ1- μ2=0.
Kvantitatív Módszerek
Kvantitatív módszerek
Idősor elemzés Idősor : időben ekvidisztáns elemekből álló sorozat
Gazdaságstatisztika 19. előadás Hipotézisvizsgálatok
Gazdaságstatisztika Hipotézisvizsgálatok Nemparaméteres próbák II. 17. előadás.
Gazdaságstatisztika 11. előadás.
Gazdaságstatisztika Korreláció- és regresszióelemzés 20. előadás.
Gazdaságstatisztika 18. előadás Hipotézisvizsgálatok
Gazdaságstatisztika 13. előadás.
Gazdaságstatisztika 16. előadás Hipotézisvizsgálatok Alapfogalamak
Hipotézis vizsgálat (2)
Többváltozós adatelemzés
Következtető statisztika 9.
A sztochasztikus kapcsolatok (Folyt). Korreláció, regresszió
Alapsokaság (populáció)
Várhatóértékre vonatkozó próbák
Lineáris regresszió.
t A kétoldalú statisztikai próba alapfogalmai

Két kvantitatív változó kapcsolatának vizsgálata
Hipotézisvizsgálat v az adatforrás működési “mechanizmusát” egy véletlen eloszlás jellemzi v az adatok ismeretében megfogalmazódnak bizonyos hipotézisek.
I. előadás.
TÁRSADALOMSTATISZTIKA Sztochasztikus kapcsolatok II.
Valószínűségszámítás - Statisztika. P Két kockával dobunk, összeadjuk az értékeket Mindegyik.
Petrovics Petra Doktorandusz
Bevezetés a méréskiértékelésbe (BMETE80ME19) 2014/
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Regresszió-számítás március 30. Dr. Varga Beatrix egyetemi.
Valószínűségszámítás II.
Többdimenziós valószínűségi eloszlások
Bevezetés a méréskiértékelésbe (BMETE80ME19) 2014/
Gazdaságstatisztika Gazdaságstatisztika Korreláció- és regressziószámítás II.
Lineáris regressziós modellek

Hipotézisvizsgálatok általános kérdései Nemparaméteres próbák
II. előadás.
Becsléselmélet - Konzultáció
Nemparaméteres próbák
I. Előadás bgk. uni-obuda
III. zárthelyi dolgozat konzultáció
III. előadás.
Sztochasztikus kapcsolatok I. Asszociáció
Dr. Varga Beatrix egyetemi docens
Valószínűségi változók együttes eloszlása
Gazdaságinformatikus MSc
2. Regresszióanalízis Korreláció analízis: milyen irányú, milyen erős összefüggés van két változó között. Regresszióanalízis: kvantitatív kapcsolat meghatározása.
Dr. Varga Beatrix egyetemi docens
Előadás másolata:

III. előadás

Illeszkedésvizsgálat –próbával diszkrét esetben Példa: 4 érmét 160-szor feldobva a „fej” dobások száma: fejek száma darabszám 0 5 1 35 2 67 3 41 4 12 Döntsük el, hogy 95% valószínűséggel szabályosak-e az érmék?

Illeszkedésvizsgálat –próbával folytonos esetben Tétel. Egy n elemű minta alapján feltehető-e, hogy az egy adott eloszlásfüggvénnyel rendelkező eloszlásból származik? Null hipotézis: : ismeretlen ? Tekintsük a következő statisztikai függvényt: , ahol - az i-edik intervallumba esés gyakorisága, - az i-edik intervallumba esés valószínűsége a feltételezett eloszlás alapján, r - a vizsgált intervallumok száma. Csak akkor alkalmazható, ha minden i esetén ! Amennyiben , akkor a null hipotézist ( az eloszlás típusára tett feltevést) elfogadjuk, egyébként elvetjük. értékét táblázatból határozhatjuk meg:

Illeszkedésvizsgálat –próbával folytonos esetben Példa: Egy automata egy heti termelését kívánjuk ellenőrizni. A legyártott 1500 db alkatrészt vizsgálva, az egyik méretének az elméleti mérettől való "x" eltérését mikronban az alábbi táblázat tartalmazza. Az előzetes mérések alapján a szórás 5 mikron. Vizsgáljuk meg, hogy a hiba eloszlása normális eloszlást követ-e?

Lineáris korreláció és lineáris regresszió

A probléma felvetése r = 0,8962 y = 1,138x + 80,778

A korrelációs együttható Legyenek adottak egy  valószínűségi változóra mért értékek, és másik  valószínűségi változóra mért értékei. Az érték párok összetartozását az azonos index jelzi. A korrelációs együttható megadja, hogy a két változó között feltételezhető-e lineáris összefüggés? Bizonyítás nélkül a korrelációs együttható: ( r ) Minél közelebb van  r  az 1-hez, annál szorosabb a két változó között feltételezett lineáris korreláció. Minél közelebb van  r  a 0-hoz, annál lazább a két változó között feltételezett lineáris kapcsolat.

A regressziós egyenes egyenlete Keressük az ponthalmazt a (legkisebb négyzetek elve szerint) legjobban közelítő egyenes egyenletét, azaz azt az y = ax + b egyenletet, melyre a mért és az egyenlettel becsült értékek eltéréseinek a négyzetösszege minimális. Keressük tehát az kétváltozós függvény lokális minimumát. Erre kapjuk: és

A regressziós egyenes egyenlete Így a regressziós egyenes egyenlete, a megfelelő átalakítások elvégzése után: Példa: Egy földgázmező földgázvagyonának kitermeléséről az 1992-96 -os években a következő adatok állnak rendelkezésre: a./ Igazolja, hogy lineáris összefüggés van a kitermelt mennyiség és az év között? b./ A regressziós becslés alapján mennyi fogy el 1992, 93, 94, 95, 96, 97-ben? c./ Ha a kitermelés üteme a jelenlegi marad, várhatóan mikor fogy el a 6000 millió -re becsült földgázvagyon?