Statisztika II. IX. Dr. Szalka Éva, Ph.D..

Slides:



Advertisements
Hasonló előadás
Összetett kísérleti tervek és kiértékelésük:
Advertisements

Hipotézisvizsgálat az adatforrás működési “mechanizmusát” egy véletlen eloszlás jellemzi az adatok ismeretében megfogalmazódnak bizonyos hipotézisek erre.
Hipotézis-ellenőrzés (Statisztikai próbák)
I. előadás.
II. előadás.
Ozsváth Károly TF Kommunikációs-Informatikai és Oktatástechnológiai Tanszék.
Összetett kísérleti tervek és kiértékelésük
Rangszám statisztikák
Feladat Egy új kísérleti készítmény hatását szeretnék vizsgálni egereken. 5 féle dózist adnak be 5 vizsgált egérnek, de nem sikerült mindegyik egérnek.
Mérési pontosság (hőmérő)
Becsléselméleti ismétlés
STATISZTIKA II. 5. Előadás Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék.
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Mintavétel Mintavétel célja: következtetést levonni a –sokaságra vonatkozóan Mintavétel.
Statisztika II. IV. Dr. Szalka Éva, Ph.D..
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Statisztika II. II. Dr. Szalka Éva, Ph.D..
Statisztika II. V. Dr. Szalka Éva, Ph.D..
III. előadás.
Regresszióanalízis 10. gyakorlat.
Varianciaanalízis 12. gyakorlat.
Nem-paraméteres eljárások, több csoport összehasonlítása
Statisztika II. VIII. Dr. Szalka Éva, Ph.D..
Statisztika II. III. Dr. Szalka Éva, Ph.D..
Kvantitatív módszerek
Kvantitatív módszerek 8. Hipotézisvizsgálatok I. Nemparaméteres próbák Dr. Kövesi János.
Nemparaméteres próbák Statisztika II., 5. alkalom.
A statisztikai próba 1. A munka-hipotézisek (Ha) nem igazolhatók közvetlen úton Ellenhipotézis, null hipotézis felállítása (H0): μ1= μ2, vagy μ1- μ2=0.
STATISZTIKA II. 3. Előadás Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék.
STATISZTIKA II. 6. Előadás Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék.
Kvantitatív módszerek
Gazdaságstatisztika 19. előadás Hipotézisvizsgálatok
Gazdaságstatisztika Hipotézisvizsgálatok Nemparaméteres próbák II. 17. előadás.
Gazdaságstatisztika 18. előadás Hipotézisvizsgálatok
Gazdaságstatisztika 22. előadás
Gazdaságstatisztika 14. előadás.
RÉSZEKRE BONTOTT SOKASÁG VIZSGÁLATA
Gazdaságstatisztika 16. előadás Hipotézisvizsgálatok Alapfogalamak
Hipotézis vizsgálat (2)
Hipotézis-ellenőrzés (Folytatás)
Alapsokaság (populáció)
Várhatóértékre vonatkozó próbák
t A kétoldalú statisztikai próba alapfogalmai
Hipotézisvizsgálat v az adatforrás működési “mechanizmusát” egy véletlen eloszlás jellemzi v az adatok ismeretében megfogalmazódnak bizonyos hipotézisek.
Paleobiológiai módszerek és modellek 4. hét
I. előadás.
A szóráselemzés gondolatmenete
Vargha András KRE és ELTE, Pszichológiai Intézet

Kvantitatív módszerek Hipotézisvizsgálatok Paraméteres próbák.
Gazdaságstatisztika Hipotézisvizsgálatok Paraméteres próbák november 19., november 20., november 26.
Kvantitatív módszerek
Konzultáció november 19. Nemparaméteres próbák, egymintás próbák
Paraméteres próbák- gyakorlat
Hipotézisvizsgálatok Paraméteres próbák
Hipotézisvizsgálatok
Nemparaméteres próbák
Kiváltott agyi jelek informatikai feldolgozása 2016
Hipotézisvizsgálatok általános kérdései Nemparaméteres próbák
II. előadás.
Kvantitatív módszerek MBA és Számvitel mesterszak
Gazdaságstatisztika konzultáció
Kvantitatív módszerek
III. zárthelyi dolgozat konzultáció
Hipotézisvizsgálatok Paraméteres próbák
Sztochasztikus kapcsolatok I. Asszociáció
Kockázat és megbízhatóság
Nemparaméteres próbák
2. Regresszióanalízis Korreláció analízis: milyen irányú, milyen erős összefüggés van két változó között. Regresszióanalízis: kvantitatív kapcsolat meghatározása.
1.3. Hipotézisvizsgálat, statisztikai próbák
3. Varianciaanalízis (ANOVA)
Előadás másolata:

Statisztika II. IX. Dr. Szalka Éva, Ph.D.

Hipotézisvizsgálat I. Dr. Szalka Éva, Ph.D.

Várható értékre irányuló egymintás próbák z-próba t-próba egyoldali kétoldali H0  =  0 H1  >  0 ( <  0)    0 próba-statisztika Elutasítási tartomány zsz > z (zsz < -z) usz < -u/2 vagy usz > u/2 tsz > t (tsz < -t) tsz < -t/2 vagy tsz > t/2 feltételek  ismert v. n > 30 Dr. Szalka Éva, Ph.D.

Sokasági szórásra vonatkozó próba Alapelv: egy mintánk van, és a minta adatai alapján egy adott állapothoz viszonyítjuk a vizsgált jellemzőt. n = mintaszám s*= a mintából számolt korrigált tapasztalati szórás H0 fennállása esetén a a próbafüggvény n-1 szabadsági fokú χ2 eloszlást követ. Dr. Szalka Éva, Ph.D.

Két mintás statisztikai próbák Két független minta várható értékének az összehasonlítása z-próba t-próba egyoldali kétoldali H0 x1 = 2 H1 x1 > x2 (x1 < x2) x1  x2 (x1 < 2) x1  2 próba-statisz-tika Eluta-sítási tarto-mány zsz > z (zsz < -u) zsz < -z/2 vagy zsz > z/2 tsz > t (tsz < -t) tsz < -t/2 vagy tsz > t/2 Feltéte-lek 1 és 2 ismert v. n1 és n2 > 30 1 ≠ 2 Dr. Szalka Éva, Ph.D.

Két sokasági szórás egyezőségére irányuló próba Két független, ismeretlen várható értékű és szórású normális eloszlást követő valószínűségi változó varianciáinak azonosságára vonatkozó hipotézisünket az ún. F-próbával ellenőrizhetjük. H0: 12 = 22 H1: 12 > 22 számláló: DF1 = n1 -1 nevező: DF2 = n2 -1 Sajátosság: mindig egyoldali próbaként végezzük el! Dr. Szalka Éva, Ph.D.

Hipotézisvizsgálat II. Dr. Szalka Éva, Ph.D.

Két eloszlás egyezőségének vizsgálata: Homogenitásvizsgálat Két minta azonos sokaságból, azaz azonos eloszlásból származik-e? (valamely változó két sokaságon belüli eloszlása azonos-e): Nem állít semmit az eloszlás típusáról és egyes jellemzőiről, csak a két eloszlás egyezését mondja ki. A két minta nagysága nem kell, hogy azonos legyen, de a vizsgált változó szerint mindkét mintában azonos osztályokat kell képezni. Dr. Szalka Éva, Ph.D.

Illeszkedésvizsgálat Egy valószínűségi változó eloszlására vonatkozó állítás vagy feltételezés ellenőrzését illeszkedésvizsgálatnak nevezzük. Az általunk feltételezett eloszlása minden ismérvváltozathoz egy maghatározott Pi valószínűséget rendel. A nullhipotézis tehát: H0:P(ci)=Pi i=1,2,…k, az alternatív hipotézisünk pedig: H1:P(ci)Pi A H0 helyességét a 2-próbafüggvénnyel vizsgálhatjuk meg: Dr. Szalka Éva, Ph.D.

Illeszkedésvizsgálat elfogadási tartomány pedig: . Dr. Szalka Éva, Ph.D.

Függetlenségvizsgálat Két valószínűségi változó közötti kapcsolatot, függetlenséget vizsgálja. H0:Pij=Pi*Pj (i=1,2,….,s; j= 1,2,….t) H1:PijPi*Pj A szabadságfok: szf=(s-1)*(t-1) Dr. Szalka Éva, Ph.D.

Varianciaanalízis Képezzük az összes megfigyelés számtani átlagát! Teljes négyzetösszeg: Csoportok közötti négyzetösszeg: Csoportokon belüli négyzetösszeg: Dr. Szalka Éva, Ph.D.

Varianciaanalízis A H0 helyességét próbafüggvénnyel vizsgáljuk, és ez az F-próbafüggvény. SSK: a csoportok közötti eltérés négyzetösszege (külső szórás négyzete) M: a csoportok száma SSB: a csoportokon belüli eltérés négyzetösszege. (belső szórás négyzete) Ezen kívül ki kell számolni az összes adat szórásnégyzetét is. SST=SSK+SSB (teljes szórás négyzete) Dr. Szalka Éva, Ph.D.

A varianciatáblázat A szóródás oka SS (SQ) DF(FG) MS(MQ) F Külső (kezelés) SSK M-1 sk2 sk2/ sb2 Belső (hiba) SSB n-M sb2 Teljes SST n-1 Dr. Szalka Éva, Ph.D.