AMFI KUPA és ami mögötte van…

Slides:



Advertisements
Hasonló előadás
Egyszerű oszthatósági problémák
Advertisements

Készítette: Kosztyán Zsolt Tibor
Oszthatósággal kapcsolatos feladatok pszeudokódban.
Átváltás a számrendszerek között
Elemi algoritmusok Páll Boglárka.
Természetes számok 0, 1, 2, 3, ..., 24, 25, ..., 1231, 1232, ..., n, ...  = {0, 1, 2, 3, ..., n,...} a természetes számok halmaza Műveletek: összeadás.
Oszthatóság Az a osztója b-nek, ha van olyan egész szám, amivel a-t szorozva b-t kapok. (Az a osztója b-nek, ha egész számszor megvan benne.) Ha a|b, akkor.
Elemi algoritmusok Páll Boglárka.
Elemi algoritmusok Páll Boglárka.
Osztó, többszörös Osztó: azokat a számokat, amelyekkel egy B szám osztható, az B szám osztóinak nevezzük. Minden számnak legalább két osztója van, 1 és.
Azonosítók és képzési szabályaik
Legyenek az a és b egész számok.
V 1.0 Szabó Zsolt, Óbudai Egyetem, Haladó Programozás Parallel.For()
Halmazok, műveletek halmazokkal
6) 7) 8) 9) 10) Mennyi az x, y és z értéke? 11) 12) 13) 14) 15)
Euklidészi gyűrűk Definíció.
Egy f  R[x] polinom cS -beli helyettesítési értéke
Arány és arányosság.
Számhalmazok.
Csernoch Mária Adatábrázolás Csernoch Mária
Borland C/C++ mintapéldák tömbökre
Számelmélet Matematika Matematika.
Matematika: Számelmélet
Algebrai törtek.
Algebra, számelmélet, oszthatóság
Törtek.
A TERMÉSZETTUDOMÁNYOK ALAPJAI 1. Matematika
Lineáris korreláció és lineáris regresszió. A probléma felvetése y = 1,138x + 80,778r = 0,8962.
6. SZÁMELMÉLET 6.1. Oszthatóság
ELTE Szlávi-Zsakó: Programozási alapismeretek Szlávi-Zsakó: Programozási alapismeretek 3. 1/
Oszthatóság Az a osztója b-nek, ha van olyan egész szám, amivel a-t szorozva b-t kapok. (Az a osztója b-nek, ha egész számszor megvan benne.) Ha a|b, akkor.
Készülj az érettségire
Sárgarépa piaca hasonlóságelemzéssel Gazdaság- és Társadalomtudományi kar Gazdasági és vidékfejlesztési agrármérnök I. évfolyam Fekete AlexanderKozma Richárd.
Programozás C# - ban Feladatsorok.
Az RSA algoritmus Fóti Marcell.
Halmazműveletek.
Logikai szita Pomothy Judit 9. B.
Logikai szita Izsó Tímea 9.B.
Logikai szita Baráth Kornél.
Elemi algoritmusok Páll Boglárka.
Egy matek óra a XVIII.sz.-ban
2006. március 3. Három négyzet oldalai különböző prím- számok. A két kisebb négyzet kerületének ösz- szege egyenlő a legnagyobb négyzet kerületé- vel;
VARIÁCIÓK ISMÉTLÉS NÉLKÜLI ESET DEFINÍCIÓ
Programozási feladatsor ciklusok gyakorlására Készítette: Rummel Szabolcs Elérhetőség:
XVII. Hajnal Imre Matematika Tesztverseny
AMFI KUPA és ami mögötte van…
Számítógéppel támogatott problémamegoldás
Egyszerű cserés rendezés
2006. január 20. Telefonos feladat Néhány (2-nél több) dobókockát feldobtunk és véletlenül minden kockával ugyanazt a prím- számot dobtuk. A dobott számok.
Számtani és mértani közép
és a Venn-Euler diagrammok
A Z EGÉSZ SZÁMOK HALMAZA (I SMÉTLÉS ) 3. óra. M IÉRT SZÜKSÉGES BEVEZETNI AZ EGÉSZ SZÁMOKAT ? Végezd el a műveleteket! = = 52-56= Melyik.
Alapműveletek (Természetes számok, Egész számok)
1. feladat  Készíts olyan függvényt, mely paraméterül kapja két egész típusú változó címét, s hívása után a két változó értéke helyet cserél.
A természetes számok osztása, az osztás tulajdonságai
Szállításszervezés.
Számok világa.
ZRINYI ILONA matematikaverseny
Számtani alapműveletek
óra Műveletek a racionális számok halmazán
Bemutató óra
Összefoglalás 7. évfolyam
137. óra - Ismétlés Számok és műveletek
A kínai maradéktétel algoritmusa
Algebra, számelmélet, oszthatóság
A legkisebb közös többszörös
Átváltás a számrendszerek között
Algebra, számelmélet, oszthatóság
Tanórán kívül lehet kicsit több
Előadás másolata:

AMFI KUPA és ami mögötte van… Óbudai Pedagógia Napok 2011. MÁRCIUS 24. Készítette: Besnyőné Titter Beáta

FELADATOK

1. a) Melyik az a legkisebb pozitív egész szám, amelyik nem osztója az 1  ∙  2  ∙  3  ∙  4 ∙  ...  ∙  13  ∙  14 szorzatnak? b) Melyik az a legkisebb pozitív egész szám, amelyik nem osztója az 1  ∙  2  ∙  3  ∙  4  ∙  ...  ∙  83  ∙  84 szorzatnak? Megoldás: a) 17 b) 89

Mennyi lesz a maradék, ha az A = 1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙ 7 ∙ 8 ∙ 9 ∙ 10 ∙ 11 ∙ 12 ∙ 13 ∙ 14 + 1999 számot elosztjuk 84-gyel? Megoldás: 84=2∙2 ∙3 ∙7 84│14 ! , 1999 pedig 84-gyel osztva 67 maradékot ad. Tehát 67 a maradék.

Megoldás: Ha 6 a maradék, akkor az osztó csak 7, 8 vagy 9 lehet. 3. Melyik az a legkisebb, illetve a legnagyobb kétjegyű szám, amelyet ha elosztunk egy egyjegyű számmal, maradékul 6-ot kapunk? Megoldás: Ha 6 a maradék, akkor az osztó csak 7, 8 vagy 9 lehet. Osztó legkisebb legnagyobb 7 13 97 8 14 94 9 15 96 Tehát a legkisebb a 13, legnagyobb a 97. Megjegyzés: ha háromjegyűek között keressük, akkor 8-cal való osztáskor kapjuk a legkisebbet és a legnagyobbat. Vajon a legkisebb és a legnagyobb azonos jegyűek között mindig ugyanannál az osztónál fordul-e elő?

Egy családban mindhárom gyerek november 15-én született, ketten közülük ikrek. A mai napon életkoruk szorzata 36. A legkisebb gyereknek a szülei még ezen az emlékezetes napon sem engedték meg, hogy kutyáját egyedül sétáltassa. Miért? Megoldás: 36= a∙a∙b → a∙a = 1, 4, 9, 36 lehet, a∙a 1 4 9 36 b a 2 3 6 de b<a, ezért a legkisebb gyerek csak egyéves lehet.

5. Egy négyzet alakú tortát akarunk fölszeletelni az oldalakkal párhuzamos vágásokkal. Hányféleképpen tehetjük ezt meg, ha a vágások számának és a kapott szeletek számának is prímszámnak kell lennie? Megoldás: Szeletek száma prím →csak egy irányban lehet vágni Ha „a” vágást csinálunk, akkor a+1 szelet lesz, tehát a és a+1 is prím, ezért a=2

6. Van-e olyan egyenlő szárú háromszög, amelynél mindhárom oldal hossza centiméterben mérve prímszám, és a háromszög kerülete 1992 cm? Megoldás: Ha három prímszám összege páros, akkor az egyik a 2. A másik kettő csak páratlan prím lehet, mert összege 1990. De a háromszög egyenlőtlenség miatt a másik két oldal különbsége kisebb, mint 2. De két páratlan prím különbsége legalább 2. Tehát nincs ilyen háromszög.

7. Felvettük a füzetünkbe a 2, 4, 6 és 7 cm hosszúságú szakaszokat 7. Felvettük a füzetünkbe a 2, 4, 6 és 7 cm hosszúságú szakaszokat. Ezekből bármelyiket akár többször is felhasználva háromszögeket szerkesztünk. Hány különböző háromszöget lehet ily módon készíteni? Megoldás: Egyenlő oldalú: 4 db Egyenlő szárú: 9 db (7, 6, 4 lehet a szár a többivel) Általános 2 db (2, 6, 7 vagy 4, 6, 7) Tehát 15 db ilyen háromszög van.

8. Egy háromszög két oldala 8 cm és 12 cm hosszúságú 8. Egy háromszög két oldala 8 cm és 12 cm hosszúságú. Ha a harmadik oldal hossza is cm-ben mérve egész szám, és a kerület 3 többszöröse, akkor milyen hosszú lehet a harmadik oldal? Megoldás: Mivel 8+12=20, ami 3-mal osztva 2 maradékot ad, ezért a harmadik oldal hossza 1 maradékot kell, hogy adjon 3-mal való osztáskor. Így a harmadik oldal 1,4,7,10,13,16,19 lehetne (8+12=20), de az 1 és 4 esetén nincs háromszög. Tehát összesen 5 db háromszög van.

9. Egy kockát minden lapjára tükrözünk 9. Egy kockát minden lapjára tükrözünk. Az így kapott test (az eredeti kockával együtt) térfogata hányszorosa a kocka térfogatának? Hány százalékkal nagyobb az új test felszíne a kiindulási kocka felszínénél? Megoldás: Térfogata 7-szerese. Felszíne 5-szöröse, tehát 400%-kal nő.

10. Egy asztalon 1 cm3-es kockák vannak 10. Egy asztalon 1 cm3-es kockák vannak. Ezekből 64 darabot felhasználva egy tömör kockát raktunk össze. Ezután a megmaradt kockákból néhányat úgy tettünk ennek a kockának a tetejére, hogy a kis kockák alsó lapjai teljes felületükkel érintkezzenek a nagy kocka felső lapjával. Elérhető-e ily módon, hogy a kapott 5 cm magas test felszíne 126 cm2 legyen? Megoldás: 4 cm élű kockát raktunk össze. Ennek felszíne 4  4  6 = 96 cm2, a felszínt tehát 30 cm2-rel kell növelni. Ez megoldható pl. 8 kockával.

11. Egy kocka éleinek hossza 3 cm 11. Egy kocka éleinek hossza 3 cm. Az egyik lap közepén – az ábrán látható módon – 1 cm alapélű, négyzetes oszlop alakú lyukat vágtunk a szemben lévő lapig. A "lyukas kockát" festékbe merítettük, majd a száradás után 1 cm3-es kis kockákra vágtuk. Hány kockánk lett ily módon? Ezek közül hány olyan van, amelynek 3 oldala festett? Megoldás: 27-3=24 kockánk lett. Minden csúcsnál lévő kocka három oldala festett, ezért 8+8=16 kocka mindhárom oldala festett.

Így a dobozban 300 – 1 = 299 cukor maradt. 12. Lilla felbontott egy doboz kockacukrot. (A kockacukrok kocka alakúak, és együtt egy tömör téglatestet alkotnak.) Először leszedte a teljes felső réteget, ami 77 cukorból állt, és egy cukortartóba tette. Utána az egyik oldalsó, 55 kockacukrot tartalmazó réteget, majd az elülső réteget tette át a cukortartóba. Ezután a dobozban maradt cukrok közül egyet megevett. Hány cukor maradt a dobozban? Megoldás: A felső réteget 1 ∙ 77 vagy 7 ∙ 11 cukor alkothatta. Az első esetben az oldalsó 55 ∙ 1 és az elülső 76 ∙ 55 cukor elvétele után nem maradt volna cukor, amit Lilla megehetett volna. A felső rétegben tehát 7 ∙ 11 cukor volt. Az oldalsó rész csak 5 ∙ 11 lehetett, így a test magassága 6, térfogata 7 ∙ 11 ∙ 6 = 462 cukor. A három réteg (77 + 55 + 5 ∙ 6) elvétele után a megmaradt téglatestet 6 ∙ 10 ∙ 5 = 300 cukor alkotta. Így a dobozban 300 – 1 = 299 cukor maradt.

Balázsnak 11 fiú osztálytársa van, és osztályában a lányok száma másfélszer annyi, mint a fiúké. Egy szombati napon Balázs a dinnyeárusításban segített nagyapjának. Nyolc és tíz óra között eladták a dinnyék felét és még 3 darabot, tíz órától délig a megmaradtak harmadát és még 2 darabot. Ekkor Balázs azt mondta, hogy több dinnyét már ne adjanak el, mert éppen annyi darab maradt, hogy a délutáni klubdélutánon az osztály minden tagja harmad dinnyét kaphat. Hány dinnyéjük volt Balázséknak 8 órakor? Megoldás: Osztálylétszám: 12 fiú és 18 leány, tehát 10 dinnye maradt. (10+2)∙2:3=18 (18+3)∙2=42 Tehát nyolc órakor 42 dinnyéjük volt.

14. Egy zsák dióból kiveszünk 8-at, ezek közül 7-et egy kosárba, a nyolcadikat egy tálba tesszük. Ezt addig ismételjük, amíg a zsákban nem marad dió. Ezután a tálból szedjük ki nyolcasával a diókat, 7-et egy dobozba, a nyolcadikat egy tányérba téve, amíg a tálban 3 marad, a tányérba pedig 31 dió kerül. Hány dió volt eredetileg a zsákban? Megoldás: ZSÁK kosár tál tányér doboz 3 31 31∙7=217 3+8∙31=251 251∙7=1757 1757+251=2008 Röviden 251 ∙ 8=2008

15. Három ötödikes tanuló a Föld Napján 69 tő parlagfüvet húzott ki a földből; András és Béla együtt 47, Béla és Csongor együtt 41 darabot. Hány parlagfüvet tettek ártalmatlanná külön-külön? Megoldás: A=69-41=28, C=69-47=22, B=47-28=19

16. Két egész szám összege 78. Ha mindkét számból kivonjuk ugyanazt a számot, akkor 36-ot, illetve 28-at kapunk. Melyek ezek a számok?

17. Egy számsorozat első tagja 2, a második 3, a további tagjait pedig úgy képezzük, hogy minden egyes tag eggyel kisebb legyen, mint két szomszédjának a szorzata. Mi a sorozat 11. eleme? Mennyi az első 1108 tagjának az összege? Megoldás: 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, … Periódusa:5, 221 periódus fut le és még marad 3, így az összeg 221 ∙ 9+2+3+2=1996. Ebben az évben feladható?

18. A 3, 6, 12, 5, 10, 1, … sorozat következő elemét úgy kapjuk az előzőből, hogy annak utolsó számjegyét megduplázzuk és ehhez hozzáadjuk az utolsó számjegy elhagyásával kapott számot. (Például a 324 után a 2· 4 + 32 = 40 következne.) Mutassuk meg, hogy a sorozat 14. eleme a 9. b) Mi lesz a sorozat 2008. eleme? Megoldás: 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, … 18 a periódus, 2008=18 ∙ 111+10, ezért 16 a 2008. elem.

Így a keresett összeg: 33 ∙ 7+1+2=234 19. Egy számsorozat bármely 3 szomszédos számának szorzata megegyezik a középső szám négyzetével. A sorozat 11. eleme 0,5 , a 13. eleme pedig 1. Számítsd ki a sorozat első elemét! Mennyi a sorozat első 200 tagjának az összege? Megoldás: A 12. elem 0,5 vagy 0 lehetne, de a 0 nem működik tovább. Ekkor a feltétel úgy is fogalmazható, hogy a középső elem a két szomszéd szorzata. Így a tagok: 1 2 2 1 0,5 0,5 1 2 2 1 0,5 0,5 1 Tehát az első elem az 1. A sorozat periodikus, periódusa 6. Egy periódusban az összeg 7, 33 teljes periódus fér bele. Így a keresett összeg: 33 ∙ 7+1+2=234

20. Egy számsorozat első 10 eleme a következő: 100, 101, 103, 107, 115, 122, 127, 137, 148, 161, ... . Határozzuk meg a sorozat 13. elemét!

21. A 4, x, 7, 11, y, 35, 67, ... sorozatot valamilyen szabály alapján képeztük. Próbáld meg kitalálni ezt a szabályt! Milyen számot kapunk, ha a sorozat első 11 elemének összegéből levonjuk a 4. és a 7. tagot? Segítség: x=5 y=19

GYÖNGYSZEMEK

1. Az O középpontú, 4 cm sugarú körben megrajzoltuk az ABCD négyzetet, a PQ és RS átmérőket. PQ legyen párhuzamos AB-vel és CD-vel, RS pedig AD-vel és BC-vel. Az átmérők és a négyzet oldalainak metszéspontja K és L, illetve M és N. Milyen hosszú a PKNOLMR törött vonal?

Megoldás: Két átmérő hosszúságú C D N O K P L Q M B A R Megoldás: Két átmérő hosszúságú

2. Egy négyzet csúcsai, oldalainak felezőpontjai és átlóinak metszéspontja 9 pontot határoznak meg. 8 olyan egyenes van, mely három ponton halad át. Mozdítsunk el két pontot úgy, hogy 10 olyan egyenes legyen, mely három ponton halad át!

Megoldás:

3. Az ábrán látható alakzatokat szürke kartonból vágtuk ki (a papírlapnak csak a felénk eső része szürke). Hányféle szürke téglalapot tudunk kirakni az összes darab felhasználásával? A rajzodról derüljön ki, hogy a téglalapot (téglalapokat) a kapott alakzatokból hogyan állítottad össze.

Megoldás:

4. Egy asztalon négy pohár áll:      Egy-egy alkalommal három poharat megfordítunk. E művelet megismétlésével elérhetjük‑e, hogy mindegyik pohár meg legyen fordítva?  

5. Az ábrán látható alakzat 5 db 1 cm oldalhosszúságú négyzetből áll 5. Az ábrán látható alakzat 5 db 1 cm oldalhosszúságú négyzetből áll. Hogyan lehet két vágással három részre vágni úgy, hogy a kapott részekből 5 cm2 területű négyzetet lehessen összerakni?

Megoldás: A kapott négyszög mind a két alábbi esetben valóban négyzet, mert oldalai egyenlők, szögei pedig 90o-osak.

6. Az ábrán látható négyzet mind a kilenc mezejében eredetileg a 0 számjegy szerepelt. Egy lépés során kiválasztottunk egy négy négyzetből álló négyzetet, és az abban lévő négy szám mindegyikét 1-gyel megnöveltük. 40 lépés után az ábrán látható számokhoz jutottunk. Határozzuk meg az a, b, c, d, e, f értékét! Megoldásodat indokold! 8 a 7 b c d 22 e f

Megoldás: Akárhogy választunk ki egy kis négyzetet, a középső négyzet mindig benne lesz, ezért c = 40. Minden kiválasztásnál csak az egyik sarokmezőben lévő szám növekszik 1-gyel, ezért 7 + 8 + 22 + f = 40, ahonnan f = 3. Az a mezőt mindkét mellette álló sarokmezővel kiválasztjuk, ezért a = 8 + 7 = 15. Hasonlóan b = 8 + 22 = 30; e = 22 + 3 = 25 és d = 7 + 3 =10. 8 7 22 a 15 30 b 40 10 c d 25 e f 3

7. Tegnap Zoli a következőket mesélte társainak: – Képzeljétek! Egy augusztusi napon a Duna-parton összegyűjtöttem 202 kavicsot. Egyet közülük bedobtam a vízbe, a többit két halomra osztottam. Azután mindig eldobtam egy kavicsot egy olyan halomból, amelyben egynél több kavics volt, majd azt a halmot ismét két kisebbre osztottam. Fél óra múlva azt vettem észre, hogy minden halomban 3 kavics van. – Biztosan napszúrást kaptál a dobálás közben, ezért tévedtél a számolásban – mondta erre Marci. Mivel magyarázod Marci válaszát?

XVIII. Amfiteátrum Kupa 2011. november Elérhetőségek: www.arpad.sulinet.hu 06-1-3887120 Besnyone.Titter.Beata@arpad.sulinet.hu