Virtuális méréstechnika Spektrum számolása 1 Mingesz Róbert V 3.0 2013.09.28.

Slides:



Advertisements
Hasonló előadás
„Esélyteremtés és értékalakulás” Konferencia Megyeháza Kaposvár, 2009
Advertisements

Virtuális méréstechnika Hálózati kommunikáció 1 Mingesz Róbert V
A LabVIEW használata az oktatásban
Gábor Dénes Főiskola Informatikai Rendszerek Intézete Informatikai Alkalmazások Tanszék Infokommunikáció Beszédjelek Házman DIGITÁLIS BESZÉDJEL ÁTVITEL.
Mérés és adatgyűjtés laboratóriumi gyakorlat Virtuális méréstechnika levelező Mingesz Róbert 3. óra október 22.
3. Folytonos wavelet transzformáció (CWT)
Programozási alapismeretek 10. előadás
Alhálózat számítás Osztályok Kezdő Kezdete Vége Alapértelmezett CIDR bitek alhálózati maszk megfelelője A /8 B
Mérés és adatgyűjtés laboratóriumi gyakorlat Karakterisztikák mérése 1 Makan Gergely, Mingesz Róbert, Nagy Tamás V
Virtuális méréstechnika Mérés és adatgyűjtés Mingesz Róbert 4. Óra LabVIEW – Fájl I/O, TCP-IP szeptember 26., verzió.
Mérés és adatgyűjtés Virtuális méréstechnika Mingesz Róbert 9. Óra Idő és sokaságátlag November 7., 9.
Mérés és adatgyűjtés Virtuális méréstechnika Mingesz Róbert 7. Óra Digitális oszcilloszkóp kezelése LabVIEW-ból Október 17., 19.
Mérés és adatgyűjtés Virtuális méréstechnika Mingesz Róbert 6. Óra Digitális oszcilloszkóp és hangkártya Október 10., 12.
Mérés és adatgyűjtés Virtuális méréstechnika Mingesz Róbert 8. Óra Spektrum, Lock-in Október 24., 26.
A LabVIEW használata az oktatásban
Virtuális méréstechnika 12. Óra Karakterisztikák mérése November 21. Mingesz Róbert v
Ez a dokumentum az Európai Unió pénzügyi támogatásával valósult meg. A dokumentum tartalmáért teljes mértékben Szegedi Tudományegyetem vállalja a felelősséget,
Virtuális méréstechnika
Mérés és adatgyűjtés laboratóriumi gyakorlat
Mérés és adatgyűjtés 4. Óra Adatok importálása és exportálása, adatok elemzése szeptember 24., 27. Kincses Zoltán, Mingesz Róbert, Vadai Gergely.
Ez a dokumentum az Európai Unió pénzügyi támogatásával valósult meg. A dokumentum tartalmáért teljes mértékben Szegedi Tudományegyetem vállalja a felelősséget,
Virtuális méréstechnika
Virtuális méréstechnika Mingesz Róbert 5. Óra LabVIEW – Ferde hajítás Október 3.
Mérés és adatgyűjtés Virtuális méréstechnika Mingesz Róbert 9. Óra Idő és sokaságátlag November 7., 9.
Mérés és adatgyűjtés Mingesz Róbert 5. Óra LabVIEW – Ferde hajítás Október 3., 5.
Virtuális méréstechnika Görbe illesztése 1 Mingesz Róbert V
Mérés és adatgyűjtés laboratóriumi gyakorlat Sub-VI és grafikonok 1 Makan Gergely, Mingesz Róbert, Nagy Tamás v
Virtuális méréstechnika Adatok elemzése, fájl I/O 1 Mingesz Róbert V
Virtuális méréstechnika
Kincses Zoltán, Mingesz Róbert, Vadai Gergely
Mérés és adatgyűjtés laboratóriumi gyakorlat Makan Gergely, Mingesz Róbert, Nagy Tamás 2. óra szeptember 9., 10. v
Mikrovezérlők alkalmazástechnikája laboratóriumi gyakorlat
Ez a dokumentum az Európai Unió pénzügyi támogatásával valósult meg. A dokumentum tartalmáért teljes mértékben Szegedi Tudományegyetem vállalja a felelősséget,
Virtuális méréstechnika
Virtuális méréstechnika Hálózati kommunikáció 1 Mingesz Róbert V
Mérés és adatgyűjtés 6. Óra Digitális oszcilloszkóp és hangkártya
Mérés és adatgyűjtés 7. Óra
Mérés és adatgyűjtés laboratóriumi gyakorlat Virtuális méréstechnika levelező Mingesz Róbert 2. Óra október 8.
Mérés és adatgyűjtés laboratóriumi gyakorlat levelező 2. Óra Október 27. Kincses Zoltán, Mellár János v
Virtuális méréstechnika Ferde hajítás 1 Mingesz Róbert, Vadai Gergely V
Virtuális méréstechnika MA-DAQ műszer vezérlése 1 Mingesz Róbert V
TÁMOP A-11/1/KONV projekt „Telemedicína fókuszú kutatások Orvosi, Matematikai és Informatikai tudományterületeken” Szívhang monitorozása.
A LabVIEW használata az oktatásban
Matematika: Számelmélet
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Mintavétel Mintavétel célja: következtetést levonni a –sokaságra vonatkozóan Mintavétel.
Zajgenerátor.
2007 december Szuhay Péter SPECTRIS Components Kft
TÉTELEK Info_tech_2012. Simon Béláné. 1. TÉTEL 1.a. A digitális számítógép és a logikai áramkör kapcsolata (6.4.1.) 1.b. Az ÉS logikai áramkörnek adja.
A LabVIEW használata az oktatásban
Virtuális méréstechnika Karakterisztikák mérése II Mérések termisztorral Karakterisztikák mérése II Mérések termisztorral 1 Mingesz Róbert V
A LabVIEW használata az oktatásban
Virtuális méréstechnika 3. Óra Sub-VI és XY grafikon szeptember 17., 20. Mingesz Róbert v
Matematikai alapok és valószínűségszámítás

A MÉRÉSI HIBA TERJEDÉSE
Programozási alapismeretek 11. előadás. ELTE Szlávi-Zsakó: Programozási alapismeretek 11.2/ Tartalom  Rendezési.
Virtuális Méréstechnika Sub-VI és grafikonok 1 Makan Gergely, Vadai Gergely v
Mérés és adatgyűjtés laboratóriumi gyakorlat - levelező Sub-VI és grafikonok 1 Mingesz Róbert V
Elektronikus tananyag
Zajok és véletlen jelenségek interdiszciplináris területeken való alkalmazásának kutatása és oktatása. TÁMOP A/2-11/ Fehérzaj-generátor.
Mérés és adatgyűjtés laboratóriumi gyakorlat Mérések MA-DAQ műszerrel 1 Makan Gergely, Mingesz Róbert, Nagy Tamás V
Mérés és adatgyűjtés laboratóriumi gyakorlat – levelező Fájl I/O, detrending 1 Mingesz Róbert v
Mérés és adatgyűjtés laboratóriumi gyakorlat – levelező NI adatgyűjtők programozása 1 Mingesz Róbert V
Programozási alapismeretek 10. előadás. ELTE Szlávi-Zsakó: Programozási alapismeretek 10.2/  Kiválogatás + összegzés.
A LabVIEW használata az oktatásban Oszcilloszkóp vezérlése LabVIEW környezetből 1 Mingesz Róbert, Vadai Gergely május 17.
Mérés és adatgyűjtés laboratóriumi gyakorlat
Mikrovezérlők alkalmazástechnikája laboratóriumi gyakorlat BCD kijelzés és számlálók Mingesz Róbert V március
Mikrovezérlők alkalmazástechnikája levelező laboratóriumi gyakorlat
Mikrovezérlők alkalmazástechnikája laboratóriumi gyakorlat Hétszegmenses kijelző használata Makan Gergely, Markella Máté, Mellár János, Mingesz Róbert.
KŐZETFIZIKAI VIZSGÁLATOK SZÁMÍTÓGÉPES MÉRŐRENDSZERREL
Előadás másolata:

Virtuális méréstechnika Spektrum számolása 1 Mingesz Róbert V

Tartalom Spektrum számolása Feladatok megoldása 2

Spektrum számolása 3

Jelek mintavételezése dt: – mintavételi időköz fs = 1/dt – mintavételi frekvencia 4

Fourier reprezentációk 5

SpektrumSpektrum f 0 – DC jelszínt df – frekvencia felbontás f i = i ∙ df – kiválasztott frekvencia 6

DFTDFT 7

Négyszög ablakfüggvény 8

Hanning ablakfüggvény 9

WaveformWaveform 10 oldal Kezdőidő (dátum/relatív idő) ( t0 ) Mintavételi időköz ( dt ) Kitérés ( Y ) Clusterrel helyettesíthető

Waveform paletta 11 oldal

Waveform generálása 12 oldal Signal processing / Wfm Generation

Mintavételezés paraméterei (Sampling info) 13 oldal Mintavételi frekvencia ( Fs ) Minták száma ( #s, tipikusan kettő hatvány)

PSD számolása 14 oldal Signal processing / Wfm Measure

Teljesítménysűrűség spektrum 15 oldal Kezdő frekvencia ( f0=0 ) Frekvencia-feloldás ( df ) Amplitúdó ( magnitude )

Amplitúdó spektrum számolása 16 oldal Signal processing / Wfm Measure

Tömb feldarabolása több, egyforma nagyságú (block size) részre Tömb feldarabolása 17 oldal

Intensity Graph 18 oldal Fogadott adattípus: 2D tömb

1. feladat Hozzon létre egy háromszögjelet, majd számolja ki a négyzetét! A jel paraméterei: frekvencia: 10 Hz, mintavételi frekvencia: 10 kHz, minták száma Ábrázolja mindkét jelet egy grafikonon, úgy, hogy jól látszódjon az eredmény! Számolja ki mindkét jel amplitúdó-spektrumát (magnitude), és ábrázolja őket egy grafikonon 0 és 100 Hz között. 19 oldal

1. feladat Mi a különbség a két jel között? Milyen különbséget látunk, ha az y tengely (magnitúdó) logaritmikus? Miért nem csak 10 Hz-nél látunk bármit a spektrumban? Mit jelent a spektrum 0- nál felvett értéke? Miért nem éles vonalakat látunk? Hogy lehetne ezen segíteni? A vi előlapot megfelelően alakítsa ki, a feliratok legyenek informatívak (a tengelyfeliratok is)! 20 oldal

2. feladat A mellékelt SampleSignalForPSD.vi egy minta jelet ad vissza, valamint a hozzá tartozó paramétereket (mintavételi frekvencia, minták száma). Készítsen olyan programot, amely kiszámolja a jel teljesítménysűrűség-spektrumát (PSD). Megjegyzés: az SampleSignalForPSD.vi subVI- ként kell felhasználni, a VI-t nem kell megnyitni vagy szerkeszteni 21 oldal

2. feladat A program előlapján lehessen választani, hogy milyen ablakfüggvényt használunk, valamint azt, hogy decibel (logaritmikus) vagy normál (lineáris) skálán szeretnénk-e látni az eredményt. A program előlapját megfelelően feliratozza! Magyarázza meg, a látott spektrumot! Milyen különbséget lát a lineáris és a logaritmikus skálán való megjelenítés között? Történt-e „hiba” a mintavételezés során? 22 oldal

3. feladat Egy ciklusban darabolja fel a teljes jelet 1024 mintából álló darabokra. Számolja ki az egyes darabok spektrumát, majd az (időfüggő) eredményt jelenítse meg egy Intensity Graph-on! 23 oldal

3. feladat A program legyen képes mind lineáris, mind decibeles skálán megjeleníteni az eredményt! (Megjegyzés: lineáris skála esetén célszerű ha a z tengely autoskálán van, decibeles skála esetén pedig – 60 db min és 0 db max az ideális beállítás). Miben különbözik a kép lineáris és decibeles skálán? Magyarázza meg mit lát a spektrumban! 24 oldal

4. feladat Kíváncsiak vagyunk, hogyan változik a jel teljesítménye az 1024 Hz-hez tartozó frekvencián. Hogyan kaphatjuk meg a jel teljesítményét az adott pontban? Készítsen (a hármas feladaton alapuló) programot, mely ábrázolja ennek időbeli változását. Hogyan magyarázza ez a jel a korábbi spektrumokat? 25 oldal