RENDELKEZÉSRE ÁLLÓ VAGY SZÜKSÉGES INFORMÁCIÓK A KERESETT FEHÉRJÉRŐL, ILLETVE GÉNJÉRŐL - nem tudunk semmit - ismeretek a fehérje funkciójáról csak fenotípus alapján jellemezhető mutagenezis (transzpozon) kromoszomális séta van tisztított fehérje fehérje funkció tesztelhető expressziós könyvtárak fehérje szekvenálás DNS próba tervezés ellenanyag termeltetés már van ilyen fehérje illetve gén más típusú sejtekből heterológ próba használata könyvtárak átvizsgálásához EGYÉB pl. ha a fehérje szabályozása ismert szubsztraktív hibridizáció - számítógép, adatbankok genom szekvenálások
POZITÍV KLÓNOK KÜLÖNBÖZŐ KÖNYVTÁRAKBÓL VALÓ KIVÁLASZTÁSÁRA SZOLGÁLÓ MÓDSZEREK kolónia vagy plakkhibridizáció, jelölt DNS-sel DNS próba előállítása: - szintetikus (degenerált) oligonukleotidok - megfelelően választott primerekkel elôállított PCR fragment - izolált DNS fragment (lehet heterológ is) Jelölési módszerek - radioaktív vagy nemradioaktív - 5' foszforilálás, vagy 3' végen feltöltéses végjelölés vagy terminális transzferázzal, "nick-transzláció", "random priming", PCR honnan lehet próbánk: a gén már ismert, legalábbis egy darabon heterológ próba: más mikroorganizmusokból már ismert hasonló géne van tiszított fehérjénk fehérje szekvenálás DNS próba tervezés reverz transzlációval
Kodon felhasználási preferencia – táblázat Egy példa AmAcid Codon Number /1000 Fraction Gly GGG 208.00 14.99 0.17 Gly GGA 70.00 5.04 0.06 Gly GGT 117.00 8.43 0.10 Gly GGC 827.00 59.59 0.68 Glu GAG 476.00 34.30 0.60 Glu GAA 318.00 22.91 0.40 Asp GAT 297.00 21.40 0.35 Asp GAC 558.00 40.20 0.65 Val GTG 386.00 2 7.81 0.43 Val GTA 40.00 2.88 0.04 Val GTT 65.00 4.68 0.07 Val GTC 412.00 29.69 0.46 Ala GCG 630.00 45.39 0.40 Ala GCA 142.00 10.23 0.09 Ala GCT 108.00 7.78 0.07 Ala GCC 687.00 49.50 0.44 Arg AGG 35.00 2.52 0.04 Arg AGA 12.00 0.86 0.01 Ser AGT 24.00 1.73 0.04 Ser AGC 232.00 16.72 0.3 Lys AAG 465.00 33.50 0.86 Lys AAA 76.00 5.48 0.14 Asn AAT 151.00 10.88 0.37 Asn AAC 252.00 18.16 0.63 Met ATG 376.00 27.09 1.00 Ile ATA 19.00 1.37 0.03 Ile ATT 117.00 8.43 0.17 Ile ATC 570.00 41.07 0.81 Thr ACG 228.00 16.43 0.33 Thr ACA 29.00 2.09 0.04 Thr ACT 41.00 2.95 0.06 Thr A CC 383.00 27.60 0.56 Trp TGG 250.00 18.01 1.00 End TGA 37.00 2.67 0.74 Cys TGT 21.00 1.51 0.11 Cys TGC 167.00 12.03 0.89 End TAG 5.00 0.36 0.10 End TAA 8.00 0.58 0.16 Tyr TAT 213.00 15.35 0.56 Tyr TAC 170.00 12.25 0.44 Leu TTG 71.00 5.12 0.06 Leu TTA 4.00 0.29 0.00 Phe TTT 8 6.00 6.20 0.14 Phe TTC 542.00 39.05 0.86 Ser TCG 204.00 14.70 0.31 [gbbct]: 50 CDS's (13879 codons)
Lambda fág példák
cDNS-ből készült expressziós könyvtárból - Immunológiai detektálás poli- vagy monoklonális ellenanyaggal - Aktivitás mérés (csak bizonyos szerencsés esetekben) - Valamilyen módon jelölt liganddal (ha van a keresett fehérjének)
ÉLESZTŐ KÉT HIBRID RENDSZER fehérje-fehérje kölcsönhatáson alapuló szelekció GAL4 transzkripciós aktivátor aktivátor régió (AR) DNS kötő domén (DKD) lacZ GAL4 kötő hely DKD Protein X Protein Y AR lacZ GAL4 kötő hely DKD Protein X AR Protein Y kölcsönhatás esetén: kék telepek
BAKTERIÁLIS KÉT HIBRID RENDSZER lacZ GAL4 kötő hely DKD Protein X Protein Y RNS pol. lacZ DKD Protein X RNS pol Protein Y GAL4 kötő hely kölcsönhatás esetén: kék telepek pozitív szelekció, nagyobb könyvtárakra kölcsönhatás esetén: növekedés hisztidin mentes táptalajon GAL4 kötő hely his3 DKD Protein X RNS pol Protein Y
A POZITÍV KLÓNOK TOVÁBBI FELDOLGOZÁSA A könyvtárakból kapott klónok általában túl nagyok közvetlen felhasználáshoz, ezért további munkálatok szükségesek: 1. AZ INSZERT RESTRIKCIÓS TÉRKÉPEZÉSE 2. A TÉRKÉP ALAPJÁN AZ INSZERT KISEBB DARABOKBAN TÖRTÉNŐ SZUBKLÓNOZÁSA 3. AZ SZUBKLÓNOK SZEKVENCIÁJÁNAK MEGÁLLAPÍTÁSA 4. AZ INSZERT SZEKVENCIÁJÁNAK MEGÁLLAPÍTÁSA 5. SZÁMÍTÓGÉPES ADATFELDOLGOZÁS A SZEKVENCIÁN BELÜLI GÉNEK, ELEMEK AZONOSÍTÁSA
RESTRIKCIÓS TÉRKÉPEZÉS
Klónozás, szubklónozás A A B C vektor Hasítás, A,B enzimekkel Hasítás, A,B enzimekkel A inszert A B ligálás B Transzformálás, felszaporítás, tisztítás
A POZITÍV KLÓNOK TOVÁBBI FELDOLGOZÁSA A könyvtárakból kapott klónok általában túl nagyok közvetlen felhasználáshoz, ezért további munkálatok szükségesek: 1. AZ INSZERT RESTRIKCIÓS TÉRKÉPEZÉSE 2. A TÉRKÉP ALAPJÁN AZ INSZERT KISEBB DARABOKBAN TÖRTÉNŐ SZUBKLÓNOZÁSA 3. AZ SZUBKLÓNOK SZEKVENCIÁJÁNAK MEGÁLLAPÍTÁSA 4. AZ INSZERT SZEKVENCIÁJÁNAK MEGÁLLAPÍTÁSA 5. SZÁMÍTÓGÉPES ADATFELDOLGOZÁS A SZEKVENCIÁN BELÜLI GÉNEK, ELEMEK AZONOSÍTÁSA
AZ SZUBKLÓNOK SZEKVENCIÁJÁNAK MEGÁLLAPÍTÁSA
A POZITÍV KLÓNOK TOVÁBBI FELDOLGOZÁSA A könyvtárakból kapott klónok általában túl nagyok közvetlen felhasználáshoz, ezért további munkálatok szükségesek: 1. AZ INSZERT RESTRIKCIÓS TÉRKÉPEZÉSE 2. A TÉRKÉP ALAPJÁN AZ INSZERT KISEBB DARABOKBAN TÖRTÉNŐ SZUBKLÓNOZÁSA 3. AZ SZUBKLÓNOK SZEKVENCIÁJÁNAK MEGÁLLAPÍTÁSA 4. AZ INSZERT SZEKVENCIÁJÁNAK MEGÁLLAPÍTÁSA 5. SZÁMÍTÓGÉPES ADATFELDOLGOZÁS A SZEKVENCIÁN BELÜLI GÉNEK, ELEMEK AZONOSÍTÁSA
AZ INSZERT SZEKVENCIÁJÁNAK MEGÁLLAPÍTÁSA átfedő szekvenciákból, két szálon szekvenált régiókból kontig összerakás kék: szubklónozás, rózsaszín: primer séta TCH6-VEG (8691 bps) 2000 4000 6000 8000 TCH6SK O20 O15 TCH64uni TCH6uni O16 TCH13T7 O12 X1UNI TCX52t7 TCH64sk O9 X1O5 TCX34t3 X1O1 X1O6 TCX54t3 X1O2 TCX66T3 TCX75t7 TCX81t3 X1O7 X1O4 X1O3 TCX81 TCX75T3 X1O8 O10 TCH5uni X1T3 O14 O13 TCB4T3 pTCX1 pTCB4/2
Új, újabb és legújabb korszak: Nagyáteresztőképességű technikák
Centrális dogma és a bioinformatika főbb területei a molekuláris biológiában DNS Gén transzkripció, RNS szerkesztés RNS transzkriptomika degradáció transzláció, poszttranszlációs módosítás proteomika fehérje degradáció biokémiai aktivitás metabolikus útvonalak metabolomika
GENOMIKA A BIOLÓGIAI INFORMÁCIÓ HORDOZÓ MEGFEJTÉSE A teljes genetikai állomány szekvenciájának meghatározása, A szekvenciákon elhelyezkedő funkcionális régiók számítógépes jóslása: annotálás
Funkcionális genomika RNS szinten TRANSZKIPTOMIKA
Egy DNS chip kísérlet folyamatábrája
A chipek kiértékelése, eredménye
Funkcionális genomika fehérje szinten PROTEOMIKA
Proteomika EgyTipikus protokol Protein azonosítás Izoelektromos fókuszálás SDS PAGE Minta elő Protein azonosítás tömegspektrometria Láthatóvá tétel Protein pötty kivágás Kép analízis
Proteomika: az elválasztástól az azonosításig
Oligonukleotid szintézis Mintegy 50 éves múlt 5 különböző kémia: foszfáttriészter, fosztittriészter, foszfátdiészter Foszforamidit, H-foszfonát Szilárd fázisú szintézis: hordozó: controlled pore glass (CPG), vagy polisztirol Mind DNS mind RNS szintetizálható mind a két módszerrel
De ha sikerül, és van szekvenciánk Mi van rajta,van-e gén? Honnan tudjuk, hogy Valamit találtunk, találtunk-e gént? CTCGAGACGCTGTTTCTGGGGTCATTCATTCTTGGCGGGCTGCAACTGCTGGTGTGACCGACGCGACCTGGCAGGCCGCGGTGCGCAACTGGCCGGGCGGACTAATGGTGGAGCAAAAGA TCGGCATGTCCAGCGCACCTGAAGCTTGGGTGGTTGCTGCAATAGCAGCCTTCCTTATTGGCATGGCGAAGGGCGGTTTGGCCAATGTGGGGGTTATCGCCGTTCCCTTGATGTCCCTGG TCAAGCCGCCGCTTACCGCTGCCGGATTGCTGCTCCCGATCTATGTCGTTTCTGATGCATTCGGCGTCTGGCTTTATCGGCACCGGTATTCTGCCTCCAATCTGCGCATCCTGATTCCTT CGGGATTTTTTGGGGTCCTGATTGGCTGGTTATTGGCCGGGCAGATCTCCGACGCGATTGCCAGTGTCATTGTTGGTTTCACCGGCTGCGGCTTCGTGGCTGTGCTGCTGGCACGACGAG GGGTGCCATCGGTGCCGCGTCAAGCCAACGTGCCCAAAGGATGGTTTCTGGGGGTGGCCACCGGCTTTACCAGCTTTTTGACTCATTCCGGTGCGGCGACCTTCCAGATGTTCGTGCTGC CGCAACGGCTGGACAAGACCATGTTCGCGGGCACATCAACGCTTACCTTTGCTGCCATAAACCTATTCAAGATTCCGTCCTACTGGGCATTGGGACAGCTTTCGACTTCCTCGGTCATGT CCGCGCTAGTGTTGATTCCGGTGGCCGTGGCCGGGACGTTCGCAGGTGTTTTTGCGACGCGCAGGCTATCGACATCCTGGTTCTTCATTCTGGTCCAGGCGATGTTGCTGGTGGTCTCCA TTCAGCTTCTGTGGAGGGGAATGTCGGATATCCTGAACTAGCTGGAGATCGCAATGTCAGAACGCTCAATCAATCAGAATGTAATCTTGACATAGAATACCGTTCCGATTTATTGCTTCG AGTGAAGCTGCCCGTCCGCTGAGATGTCATGACATTTTCCCCGCTTGATTCCGCCCTGCTTGGACCGTTGTTCGCGACCGATGAAATGCGCACGGTCTTCTCCGAACGGCGTTTTTTGGC GGGAATGCTTCGTGTTGAAGTGGCCCTGGCGCGCGCGCAGGCGGCAGAGGGCCTTGTCAGTTCGGAATTGGCCGACGCGATCGAGGTTGTTGGTACTGCCGGGTTGGACCCCGAGGCGAT GGCGGCGACTACTCGCATGACAGGAGTGCCCGCAATATCGTTCGTCCGTGCGGTGCAATCGGCCCTGCCGCCCTCACTGGCGGGTGGATTTCATTTCGGCGCCACCAGTCAAGACATCGT GGATACGGCCCACGCGCTCCAGCTGGCCGAGGCACTCGATATTATAGAAGTCGATTTACACGCCACTGTCAGCGCAATGATGAATCTGGCCGCTGCTCACTGCAATACACCCTGTATCGG GCGCACGGCCTTGCAGCACGCAGCGCCAGTTACGTTCGGCTACAAGGCGTCCGGCTGGTGCGTTGCCCTGGCGGAGCATCTGGTGCAGCTTCCCGCGCTGCGAAAGCGGGTTCTGGTGGC GTCGCTAGGGGGGCCGGTTGGTACCCTTGCCGCGATGGAGGAGCGGGCCGACGCTGTACTGGAGGGTTTCGCTGCGGACCTGGGGTTGGCCATTCCCGCCCTGGCCTGGCACACGCAGCG GGCCCGGATCGTCGAGGTGGCCAGTTGGCTGGCCATATTGCTGGGAATTCTGGCAAAAATGGCCACCGATGTCGTTCACTTGTCCTCCACGGAAGTGCGCGAGCTTTCCGAACCTGTAGC GCCGGGCAGGGGGGGCTCCTCGGCGATGCCTCACAAGCGGAACCCGATTTCCTCGATTACCATCCTGTCCCAGCATGCTGCGGCAGGGGCCCAGCTCTCCATTCTCGTGAACGGCATGGC CAGTCTGCACGAACGTCCGGTGGGGGCGTGGCATTCGGAATGGTTGGCTCTGCCGACGCTGTTCGGCCTTGCCGGCGGTGCCGTGCGCGAGGGCAGGTTTCTGGCCGAGGGGCTGCTGGT CGATGCCGACCAGATGGGTCGCAATCTACAATTGACCAATGGCCTGATTTTCAGCGACGCGGTAGCCGGCCAGTTGGCAAAGCACTTGGGTCGGGCCGAGGCTTATGCCGCTGTCGAGGA TGCCGCCGCCGAGGTGTTGCGTTCAGGCGGCAGCTTTCAGGGTCAGCTGAACCAGCGCCTGCCCGATCACCGCGACGCTATCGCTATTGCTTTTGATACGACGCCGGCGATCCAGGCCGG GGCCGCCCGCTGCCGTAGTGCGCTGGATCATGTGGCTCGTATTCTTGGACCCGCCTCTACCATCGGATTTCAAGGAGGCTAATGACGTGACGACACTGTTTGAGGCGACGACCATCCCGA TTTGCGAGGGCCCGCGCGACCAGACCGCCGAGATCCTTTTCGAGATGCCGCCGGGTGCGTGGGATACCCATTTTCATGTTTTTGGCCCAGTTTCATCGTTTCCATACGCAGAACACAGGC TCTATTCCCCACCGGAGTCGCCACTTGAGGATTATCTGGTGTTGATGGAGGCTTTGGGGATCGAGCGCGGCGTTTGTGTCCATCCGAATGTTCATGGTGCCGACAATTCGGTGACGCTCG ACGCAGTTGCGCGGTCCGATGGTCGTCTGCTGGCGGTGATCAAGCCACATCACGAGATGACTTTTGTTCAGCTGCGGGACATGAAGGCGCAGGGGGTCTGCGGGGTACGTTTTGCCTTCA ATCCGCAGCATGGCTCGGGCGAGTTGGATACTCGTTTGTTCGAGCGTATGTTGGACTGGTGCCGCGACCTAGGCTGGTGCGTAAAATTGCATTTCGCGCCCGCTGCGCTGGACGGTCTGG CTGAACGTTTGGCGCGCGTCGATATTCCGATCATCATCGATCATTTCGGGCGGGTGGACACCGCGCAAGGTGTGGATCAGCCGCACTTCCTGCGTTTGCTCGATCTGGCCAAACTGGACC ATGTCTGGATCAAGCTTACGGGGGCAGATCGTATTAGCGGTTCCGGCGCGCCATATGACGATGTCGTGCCCTTCGCGCACGCTTTGGCAGATGTGGCGCCCGACCGCCTCCTCTGGGGTT CGGATTGGCCGCATTCAGGCTATTTCGATCCGAAGCACATACCCAATGACGGCGACTTGTTGAACCTTTTGGCGCGTTTTGCCCCCGATGCTGAACTGCGTCGTAAGATCCTTGTGGACA ACCCGCAGCGCCTGTTCGGGGCTGCTTGAGGAGCCGAGCCGATGCAACCTTTCGTCTACGAAACAGCCCCAGCGCGCGTCGTTTTCGGGCGCGGCACTTCGCAGAATCTGCGGCGGGAAC TTGAGGCCCTGAATTTTGGCAGGGCGCTGGTTCTTTCCACGCCCGACCAAAAAGAACAATCGCTGCGAATTGCCCAGGGCCTGGGTTCTCAGCTGGCGGGGTCGTTCCACGCCGCTGCCA TGCATACGCCTGTCGAGGTCACCTTGCAGGCGCTTGAGGTGCTGAAGGATGTGCAGGCCGATTGCATCGTGGCGATTGGCGGCGGCTCAACCATTGGGTTGGGCAAGGCACTGGCCCTGC GCACCGATCTGCCGCAGATCGTCGTCCCGACGACTTATGCCGGCTCGGAAATGACGCCGATCCTGGGAGAGACGGAAAACGGGCTGAAGACCACACAGCGTAATCCCAAAGTGCAGCCGA GGGTGGTTCTCTACGATGTGGACCTGACTGTGACGCTTCCGGTGCAGGCCTCGGTTACATCAGGCATGAATGCGATCGCCCATGCGGCCGAGGCATTATATGCGCGGGACGGCAATCCGG TGATCTCGCTGATGGCCGAAGAGGCGATCCGCGCGCTGGCCCATGCCCTGCCGCGTATCGTTGCCACTCCCGACGATATCGAAGCGCGCAGCGATGCCCTCTATGGCGCGTGGCTGTGCG GAACGTGCCTGGGTTCGGCCGGAATGGCGTTGCACCATAAGCTCTGCCACACCCTCGGCGGAAGTTTCGATTTGCCACATGCCCCGACCCACACGGTCATCCTCCCCTATGCGCTCGCCT ATAATAGTGATGCGGCCAGGCCCGCAATGGCAGCCATCGCGCGCGCGCTGGGCATGGCGGATGCAGCGATGGGCATGAGAGCGTTGTCCATGCGGTTGGGCGCCCCGACATCGCTGCGTG AGTTGGGCATGGCAGAAGCCGATCTTGACCGCGCCGCCGACCTGGCCACGCAAAATGCCTATTGGAACCCGCGACCCATCGAGCATGGGCCGATTCGTAACCTTCTGGGACGGGCCTGGG CTGGAACTCCGGTCTGAAGGACCTAGAGGACAGTCAATTCATTGATCTGAAGTCACCAACGAGGAGATATGGGATGAACGAGAACATTGCGATCCGCAAATTGGGCCGCCGACTCCGATT GGGCATTGCCGGTGGCGCGGGTCATTCGCTGATTGGTCCGGTTCACCGGGAGGCGGCTCGGCTTGACGATTTGTTCTCTCTCGATGCTGCGGTGCTGTCCAGTAACGCGGAACGCGGGGA TGCTGAGGCCGCGGCTCTCGGAATTCCGCGCTCCTATTCGTCCACCGCCGAGATGTTCGCAATGGAGAAGGCTAGGCCCGACGGTATTGAGGCCGTTGCCATAGCCACGCCGAATGACAG CCATTACCGGATTCTGTGCGAGGCGCTGGACGCCGGGTTGCATGTAATCTGCGACAAGCCTTTAACCTCCACGAAGGCCGAGGCCGACGACGTGCTGGTGCGGGCGAAGGCCGCGGGCAA GGTTGTGGTCCTGACCCACAATTATTCTGGCTACGCCATGGTACGCCAAGCCCGCGCCATGGTCGCCGCCGGTGAACTTGGGAAAATCCACCAGATTCACGGGGTCTACGCTCTGGGCCA GATGGGCCGTTTGTTCGAGGCCGACGAAGGGGGCGTGCCTCCGGGGATGCGTTGGCGGATTGATCCTGCGCGCGGTGGCGACAGTCACGCCCTGGTGGATATCGGCACCCATGTGCACCA TCTGGCTACCTTCATCACGCAGTTACAGGTCGTTGAGGTAATGGCCGATCTTGGGCCGGCGGTTCAAGGCCGCGCGGCCCATGACAGTGCCAACGTCATGTTCCGTATGGAAAACGGAGC TTTCGGATCGTTCTGGGCCACCAAGGCGGCATCGGGGGCCAGCAAGCTGGCGATCGAAGTCTACGGTGACAAGGGCGGCGTCCTGTGGGAGCAGGCCGACGCCAATAACTTGCTACATAT GCGGCAGGGCCAACCCCCAGCCCTGATTGGTCGACAAGTTGCCGGGCTGCATCCTGCGGCAATCCGCGCGATGCGGGGGCCGGGTTATCATTTCGTGGAAGGCTATCGCGAGGCCTTTGC GAATATGTACGTGGATTTCGCCGAACAGATCTTGGCCATGATGGGCAAGGGGGCCGCAGATCACCTGGCATTGGAAGCGCCGTCGGTCGTGGACGGCCTGCGCTCCATGGCGTTCATCGA AGCCTGTGTGGCGTCGTCGCAGGACCGCCAATGGCGGCAGGTGGAGCAAGTCAGTTGATCTCTCAGCGGCTTCGGCATTTTTCCCGGGCTGGCGGCTCCCCGCAGCTCCCTCCGGTGGAA AGAACGGGTAATCAAAATAATATTCTGATTTTAAAGGATGTTCCAGACAGCTGATTATTCCTGAAATTTAGGGCTCTTTCGGCTGTAGCAATTGACTAAAAGCCGAATTTAAGGGTAATTAAACAAACGCTGTTCGTATTATTTAAACAGGTGAGTGATGGCGATATTCCTGGAAGGCTGGCCGATGGTTTCATCTGAATACCCGGCCAGAAGCGTTGAGGCGCACCCGGCCTATCTGAC GCCAGACTATGTTTTCACGCGAAAGCGTGCGCCGACTCGACCGCTGCGGTTAATTCCTCAGTCTGCGACGGAGCTGTATGGCCCGGTTTATGGACAAGAGAGCGTCCGTCCGGGGGATAA CGACCTGACCCGTCAGCACGAAGCTGAGCCGGTGGGGGAGCGGATTCTGGTGACGGGGCGCGTGACCGACGAAGACGGGCGGGGTGTCCCTAATACGCTGCTAGAGATCTGGCAGGCCAA TGCCGCCGGTCGCTATATCCACAAGCTTGACCAGCATCTTGCCCCGCTTGATCCAAATTTCTCGGGGGCAGGGCGTACGGTTACGGGGGCTGATGGCTCTTATTCCTTCATCACGATCGT GCCGGGCGCCTATCCGGTCGTGGGGCTGCACAATGTCTGGCGCCCGCGCCACATCCATGTGTCGTTGTTCGGTCCGTCCTTCGTGACCCGCTTGGTTACCCAGATATATTTCGAGGGCGA TCCGCTGCTGAAATATGACACGATCTACAACACGGCGCCCGACATCTCGAAGCGCAGCATGGTGGCGCAGTTGGACATGGGCGCCACGCAATCCGAATGGGGCCTGACCTATCGCTTCGA CATCGTTCTGCGTGGGCGCAACGGCAGCTATTTCGAGGAACCCCATGACCACTAAGACCCCACTGACCATCACCCCCTCGCAGACTGTCGGGCCTTTCTATGCCTATTGCCTGACCCCGG AGGACTACGGGACGCTTCCACCGCTGTTCGGCGCGCAGCTTGCGACCGAGGACGCCGAAGGGGAACGGATTACGATCCAGGGAACGATCACGGACGGAGAGGGGGCCATGGTTCCCGATG CCTTGATCGAGATCTGGCAGCCGGACGGGCAGGGGCGTTTTGCTGGAGCCCATCCAGAGCTGCGGAATTCGGCCTTCAAGGGCTTCGGGCGCCGCCACTGTGACAAAAGCGGAAACTTCA GTTTCCAAACCGTGAAGCCTGGCCGGGTGCCCACTGCCGACGGCGTGATGCAGGCACCCCATATCGCTTTGTCGATCTTCGGCAAGGGATTGAACCGCCGGCTCTATACGCGGATCTACT TCGCAGACGAGGCATCGAATGCCGAGGACCCCGTTCTGTCGATGCTGTCCGAGGATGAGCGCGTGACCCTGATCGCCACCTCTGAATCGCCCGCCGCATATCGCCTCGACATCCGCCTGC AAGGCGACGGCGAAACGGTGTTTTTCGAGGCCTGAGTCGGCCGGCAAGTTTGCGGGGATCCGTCCGCCGCAATTGTGTTTCGCTATAGACGCCACGGCTGCCGCATGCCGCCGGGTGGAA GGGCCTTGCAAGGCCTGTCAACGGCGGAGTAAAATCCGGCCAGGCGGCGGAGTAAAACCAGGCCACTTGTGGCCCACGCATGAGACACCCGGGAGGGCGTAGCCCAAGCGGGGGTCTCAT GCGTGTGCGGCGGTTTTCTGGGGGTTCAGCCAGCCTTGCGGGCGCGGCTTTGAGCGAGACGATAGCTGTCGCCGTTCATCTCGAG
HONNAN LEHET TUDNI, HOGY GÉNT TALÁLTUNK? 1. DNS szekvencia homológia alapján Adatbankok, FASTA, BLAST 2. ORF KERESÉS, Általában ATG-vel kezdődő szakaszokat keresünk, amelyek ésszerűen hosszúak (100 aminosav) Clone Manager 3. A kapott ORF-k homológia kutatása
Fehérjeszekvenciák összehasonlítása
HONNAN LEHET TUDNI, HOGY GÉNT TALÁLTUNK? 4. Ha rendelkezésre áll a keresett fehérjének N-terminális szekvenciája, akkor az azzal való összevetés 5. Funkcionális analízis - a kapott polipeptidet expressziós kazettába illesztjük, és a kapott termék aktivitását teszteljük - mutáns törzs komplementációja az expressziós kazettában termeltetett fehérjével 5. Immunológiai teszt Expressziós kazettában termelt fehérjét a tisztított fehérje ellen termeltetett ellenanyaggal, Western blot-tal analizálunk 6. Bakteriális gének esetén a T7 RNS polimeráz alapú rendszerekkel 7. Transzkriptomika 8. Proteomika