ARZÉN.

Slides:



Advertisements
Hasonló előadás
Nitrogén vizes környezetben
Advertisements

Települési vízgazdálkodás I. 7.előadás
Készítők: Hőgyes Endre Gimnázium és Szakközépiskola
Gáz-folyadék fázisszétválasztás
Víztisztítás ultraszűrésel
ADSZORPCIÓS TECHNOLÓGIÁK ALKALMAZÁSA A VÍZTISZTÍTÁSBAN
SZILÁRD/FOLYADÉK FÁZISSZÉTVÁLASZTÁSI TECHNOLÓGIÁK
Technológiai alapfolyamatok
Ivóvíztisztítás Vízi Közmű és Környezetmérnöki Tanszék Laky Dóra.
Vízminőségi jellemzők
ARZÉN ELTÁVOLÍTÁSA IVÓVÍZBŐL
Vörösiszapok kezelése és hasznosítása
Kémiai szennyvíztisztítás
VÍZBÁZISOK ÉS JELLEMZŐ SZENNYEZŐANYAGAIK
NH4OH Szalmiákszesz Ammónium-hidroxid
A VEGYI KÉPLET.
Laboratóriumi kísérletek
Szennyvízkezelés 1. előadás b,
Továbbfeldolgozási eljárások és technológiák
SÓOLDATOK KÉMHATÁSA PUFFEROLDATOK
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Levegőtisztaság-védelem 3. előadás Természetes és antropogén eredetű légszennyezők. Pont-,vonal-, diffúz források.
Az elemek lehetséges oxidációs számai
A talaj 3 fázisú heterogén rendszer
A szappanok káros hatásai
A szappanok káros hatásai
Szennyvíztisztítás Melicz Zoltán Egyetemi adjunktus
ADSZORPCIÓS TECHNOLÓGIÁK ALKALMAZÁSA A VÍZTISZTÍTÁSBAN
SZENNYVÍZTISZTÍTÁS.
Ammónium.
ADSZORPCIÓ.
Tavak, tározók rehabilitációja
KÉMIAI KEZELÉS ALKALMAZÁSA A SZENNYVÍZTISZTÍTÁSBAN
ARZÉN. 50 μg/L  10 μg/L A határérték meghatározása: Maximálisan megengedhető arzén bevitel: 2 μg arzén/kg/nap Átlagos 70 kg-os testtömeget feltételezve.
A szennyvíztisztítás hulladékai
Vízlágyítás.
Felszíni vizek minősége
ADSZORPCIÓ.
ARZÉN.
Ivóvíztisztítás Vízi Közmű és Környezetmérnöki Tanszék Laky Dóra.
Technológiai alapfolyamatok
Ammónium.
Vízlágyítás.
Koaguláció. Kolloid részecske és elektrosztatikus mezője Nyírási sík (shear plane): ezen belül a víz a részecskével együtt mozog Zéta-potenciál: a nyírási.
Koaguláció.
Települési vízgazdálkodás
Magnézium-szulfát- és alumínium-szulfát reakciói
TALAJ KÉMIAI TULAJDONSÁGAI
Vízfelhasználás minőségi követelményei
Vízminőség védelem A víz az ember számára: táplálkozás, higiénia, egészségügy, közlekedés, termelés A vízben található idegen anyagok - oldott gázok -
SAVAK és BÁZISOK A savak olyan vegyületek,amelyek oldásakor hidroxidionok jutnak az oldatba. víz HCl H+(aq) + Cl- (aq) A bázisok olyan vegyületek.
A terepi gyakorlat munkanaplószerű összefoglalása Gál Brigitta, III. éves környezetkutató hallgató Környezetföldtani gyakorlat 2004.
Mi a neve az üvegben levő folyadéknak?
A Duna partján történt események röviden! Pillman Nikolett Schäffer Ivett.
SZILÁRD/FOLYADÉK FÁZISSZÉTVÁLASZTÁSI TECHNOLÓGIÁK
A Föld vízkészlete.
Települési vízkezelés ZeeWeed® az ivóvízkezelésben (magyar írásmóddal és mértékegységekkel kiegészítve - ÁF)
Vízlágyítás. Ca HCO 3 - Ca 2+ + H 2 O + CO 2 + CO 3 2- CaCO 3 képződés Túl sok CO 2 a vízben --> agresszív CO 2 Túl kevés CO 2 a vízben --> CaCO.
Koaguláció.
Élelmiszeripari szennyvizek tisztítása
ADSZORPCIÓ.
A biológiai és a kémiai szennyvíztisztítás szimbiózisa
BME Környezettechnika Szennyvíztisztítás membrántechnológiával MBR technológia MÉRETEZÉSEK Serény József.
VAS- ÉS MANGÁNTALANÍTÁS
Laky Dóra Ózon és ultraibolya sugárzás felhasználása ivóvíz fertőtlenítésre Konzulens: Dr. Licskó István Prof. Tuula Tuhkanen szeptember 25.
ARZÉN. 50 μg/L  10 μg/L A határérték meghatározása: Maximálisan megengedhető arzén bevitel: 2 μg arzén/kg/nap Átlagos 70 kg-os testtömeget feltételezve.
Próbaüzem tapasztalatai, gazdasági megfontolások
Mi a neve az üvegben levő folyadéknak?
Analitikai számítások a műszeres analitikusoknak
Előadás másolata:

ARZÉN

A határérték meghatározása: Maximálisan megengedhető arzén bevitel: 50 μg/L  10 μg/L A határérték meghatározása: Maximálisan megengedhető arzén bevitel: 2 μg arzén/kg/nap Átlagos 70 kg-os testtömeget feltételezve  140 μg arzén/nap Biztonsági tényezők figyelembe vétele: 100 μg arzén/nap Sokszor a kommunikációs nehézségek vagy a nem megfelelő kommunikáció miatt nem tudunk azokról az kutatási eredményekről melyek megkönnyíthetnék munkánkat vagy akár életünket. Ezt elkerülendő

koncentráció ivóvízben Étel: 60-80 μg arzén/nap 100 μg arzén/nap Ivóvíz általi fogyasztás: 20 μg arzén/nap 2L-es átlagos ivóvízfogyasztást feltételezve Sokszor a kommunikációs nehézségek vagy a nem megfelelő kommunikáció miatt nem tudunk azokról az kutatási eredményekről melyek megkönnyíthetnék munkánkat vagy akár életünket. Ezt elkerülendő 10 μg/L a maximálisan megengedhető arzén koncentráció ivóvízben

Ivóvíz általi fogyasztás: 70 μg arzén/nap Magyarországon... Étel: 20-30 μg arzén/nap 100 μg arzén/nap Ivóvíz általi fogyasztás: 70 μg arzén/nap Legalábbis a szakértők egy része így gondolja (más részük nem…). A 10 µg/L tartása azonban nem kérdés, hiszen vállaltuk az EU-hoz történt csatlakozáskor 2L-es átlagos ivóvízfogyasztást feltételezve 30 μg/L maximális koncentráció az ivóvízben megengedhető lenne

Arzén Határérték: Korábbi magyar szabvány: 50 μg/L Jelenlegi EU-konform MAC: 10 μ g/L Előfordulás: oldott állapotú anyag jelenik meg felszínalatti vizeinkben A vizekben az arzén főként a redukált állapotú As(III), vagy az oxidált állapotú As(V) formájában jelenik meg

Arzén – Magyarországi helyzet Forrás: ÁNTSZ (2000)

As(V) előfordulása a pH függvényében As(III) előfordulása a pH Forrás: Fields et al. (2000)

As(V) előfordulása a pH függvényében As(III) előfordulása a pH Forrás: Fields et al. (2000)

Az arzén eredete Ásványok: többnyire vas- és kéntartalmú ásványokban jelenik meg Az arzén felszín alatti vizeinkben gyakran vas és mangán vegyületekkel együtt fordul elő Adott körülmények között (például az ásványokban jelen lévő kén átalakulása miatt, a fémek és az arzén oldott állapotba kerülhetnek) Reduktív viszonyok között a vas, a mangán és az arzén oldott állapotú vegyületei stabilizálódnak

Az arzén eltávolítására szolgáló technológiák

Alkalmazott technológia Arzén-eltávolító mechanizmus Koaguláció és szilárd/folyadék fázisszétválasztás kicsapatás adszorpció koprecipitáció Aktivált alumínium-oxidon történő adszorpció adszorpció Granulált vas-hidroxidon történő adszorpció adszorpció Ioncserés eljárás speciális adszorpció Meszes vízlágyítás során történő arzén eltávolítás adszorpció a csapadék felületén, koprecipitáció Membrán technológiák nyomás hatására történő szilárd/folyadék fázisszétválasztás (előtte koaguláció) vagy: oldott As eltávolítása (RO, nanoszűrés)

Alkalmazott technológia Arzén-eltávolító mechanizmus Koaguláció és szilárd/folyadék fázisszétválasztás kicsapatás adszorpció koprecipitáció Aktivált alumínium-oxidon történő adszorpció adszorpció Granulált vas-hidroxidon történő adszorpció adszorpció Ioncserés eljárás speciális adszorpció Meszes vízlágyítás során történő arzén eltávolítás adszorpció a csapadék felületén, koprecipitáció Membrán technológiák nyomás hatására történő szilárd/folyadék fázisszétválasztás (előtte koaguláció) vagy: oldott As eltávolítása (RO, nanoszűrés)

Arzén eltávolítása koagulációval + szil/foly fázissztétválasztással Lépései: Oxidáció Koaguláció (szilárd formává történő átalakítás) Szilárd/folyadék fázisszétválasztás (ülepítés, szűrés)

Oxidáció: Klór Kálium-permanganát Ózon Levegő oxigénje – nem elég erős

Az eltávolítás hatékonyságát befolyásoló tényezők arzén oxidációs száma pH alkalmazott koaguláns koaguláns dózis egyéb szennyezők, anionok

Az eltávolítás hatékonyságát befolyásoló tényezők Az As(V)-t, azaz az oxidált formát lényegesen könnyebben lehet eltávolítani, mint az As(III)-t arzén oxidációs száma pH alkalmazott koaguláns koaguláns dózis egyéb szennyezők, anionok

Az eltávolítás hatékonyságát befolyásoló tényezők arzén oxidációs száma pH alkalmazott koaguláns Alacsonyabb pH-n kedvezőbb eltávolítási hatásfok (bár a nagy pufferkapacitás miatt Mo-n általában nem alkalmazunk pH szabályozást) koaguláns dózis egyéb szennyezők, anionok

Az eltávolítás hatékonyságát befolyásoló tényezők arzén oxidációs száma pH alkalmazott koaguláns A vas(III)-sók általában hatékonyabbak, mint az Al(III)-sók koaguláns dózis egyéb szennyezők, anionok

Az eltávolítás hatékonyságát befolyásoló tényezők arzén oxidációs száma pH alkalmazott koaguláns Az As-eltávolítás hatékonysága növekszik a koaguláns dózis növelésével koaguláns dózis egyéb szennyezők, anionok

Koaguláns dózis: A 10 μg/L-es koncentráció eléréséhez 40-szeres Fe/As arány szükséges (mg/L értékeket figyelembe véve) (Ráczné és Degré, 1998; kísérletek Gyöngyfán) EZZEL SZEMBEN: a 10 µg/L-es arzénkoncentráció eléréséhez szükséges koaguláns dózist alapvetően a nyersvíz minősége határozza meg!!!

Szervesanyag tartalom hatása az arzéneltávolításra Arzenát eltávolítása vas-klorid koagulálószerrel csepeli nyersvízből (KOI = 1 mg/L) és hortobágy-szásztelki nyersvízből (KOI = 12,7 mg/L) készített modell oldatokból (arzén koncentráció ~ 200 µg/L)

Szervesanyag tartalom hatása az arzéneltávolításra Arzenát eltávolítása alumínium-szulfát koagulálószerrel csepeli nyersvízből (KOI = 1 mg/L) és hortobágy-szásztelki nyersvízből (KOI = 13,7 mg/L) készített modell oldatokból (arzén koncentráció ~ 220 µg/L)

Szükséges fém/arzén mólarány Szervesanyag tartalom hatása az arzéneltávolításra Szükséges Me mmol/L Szükséges fém/arzén mólarány KOI ~ 1 mg/L KOI ~ 13 mg/L Vas-klorid 0,02 0,25 6,8 85,1 Alumínium-szulfát 0,13 0,8 44,3 272,5 A szükséges fém/arzén mólarány 10 µg/L-es arzénkoncentráció eléréséhez (~ 220 µ g/L kezdeti arzén koncentráció esetén) alacsony (KOI = ~ 1 mg/L) és magas (KOI ~ 13 mg/L) szervesanyag tartalmú vizek esetén

Az eltávolítás hatékonyságát befolyásoló tényezők arzén oxidációs száma pH alkalmazott koaguláns koaguláns dózis egyéb szennyezők, anionok Pl. foszfát, szilikát, szerves-anyagok…

Foszfát koncentráció hatása A foszfát ionok szintén csökkentik az arzéneltávolításra rendelkezésre álló koaguláns mennyiségét Különbőző kezdeti foszfátkoncentrációk (0,08 – 0,6 mg PO4-P/L) Azonos kezdeti arzénkoncentrációk (58 μg/L) Megegyező koaguláns dózisok (vas-klorid: 1,46 mg Fe3+/L)

Foszfát koncentráció hatása Három különböző kezdeti foszfátkoncentráció (0,38; 0,27; 0,17 mg PO4-P/L) Azonos kezdeti arzénkoncentrációk (58 μg/L) Növekvő koaguláns dózisok (vas-klorid: 0 – 5,7 mg Fe3+/L)

Következtetések az adagolandó koaguláns mennyiségére vonatkozóan A nyersvíz bizonyos paraméterei, úgymint: szervesanyag tartalom foszfát tartalom szilikát koncentráció rendkívüli mértékben befolyásolják az adagolandó vas, illetve alumínium só mennyiségét Az arzén koncentráció mértéke az egyéb – vízben jelen lévő – anyagokhoz képest csekély, így az adagolandó koagulálószer mennyiségét alapvetően nem a víz arzéntartalma, hanem a víz egyéb paraméterei határozzák meg Előkísérletek fontossága a szükséges fémsó : arzén arány meghatározására minden egyes vízbázis esetén

Technológiai sorok kialakítása

VITUKI – VÍZGÉPTERV által kidolgozott technológia (Kiss & Kelemen, 1985) Cl2 Fe(III)- flokk. Cl2 gázmentesítés Up-flow rendszerű szűrő mélységi szűrés

2HCO3- + Ca(OH)2 Ca2+ + 2CO32- + 2H2O 2Ca2+ + 2CO32- 2CaCO3 Vízlágyítás Ca(OH)2 adagolásával 2HCO3- + Ca(OH)2 Ca2+ + 2CO32- + 2H2O 2Ca2+ + 2CO32- 2CaCO3 Mg2+ + Ca(OH)2 Mg(OH)2 + Ca2+

Vízlágyítás Na2CO3 adagolásával 2Ca2+ + Na2CO3 CaCO3 + Na+

Az arzén eltávolítása meszes vízlágyítás során: Adszorpció a keletkezett csapadék felületén Koprecipitáció: Mg(OH)2 - ba történő beépülés

vízlágyítás Na2CO3 vagy Ca(OH)2 Cl2 Fe(III)- Cl2 gázmentesítés

Cl2 Fe(III)- Ca(OH)2 KMnO4 Cl2 Vízlágyítás és pH szabályozás gázmentesítés bedolgozott szűrőréteg (mangántalanítás)

Iszapkezelés lépései (Szeghalmi vízmű): Ülepítő medence az ülepítés polielektrolit adagolásával történhet, amely az ülepedést gyorsítja Iszap átemelése a kondicionáló tartályba zeolit por adagolásával egyidejűleg Gépi víztelenítés (szűrőprés) A besűrített anyag konténerbe ürítése iszapkihordó csigával II. osztályú veszélyes hulladék; az elhelyezés feltétele min. 40 % szárazanyagtartalom  veszélyes hulladék lerakó

Iszapkezelés lépései (Dél-Bács-Kiskun megyei vízmű): Ülepítő medence (10-15 óra tartózkodási idő) a felső fázis a települési csapadékcsatorna hálózatba kerül vagy visszavezetik a víztisztítási folyamat elejére Az iszap szárazanyag tartalma ülepítés után: 4-5 % Kaviccsal töltött (1-2 mm átmérőjű) drénezett szikkasztóágy tartózkodási idő: néhány nap Szikkasztás után a szárazanyag tartalom: 20 % Iszapelhelyezés: az aszódi veszélyeshulladék lerakóban

Alkalmazott technológia Arzén-eltávolító mechanizmus Koaguláció és szilárd/folyadék fázisszétválasztás kicsapatás adszorpció koprecipitáció Aktivált alumínium-oxidon történő adszorpció adszorpció Granulált vas-hidroxidon történő adszorpció adszorpció Ioncserés eljárás speciális adszorpció Meszes vízlágyítás során történő arzén eltávolítás adszorpció a csapadék felületén, koprecipitáció Membrán technológiák nyomás hatására történő szilárd/folyadék fázisszétválasztás (előtte koaguláció) vagy: oldott As eltávolítása (RO, nanoszűrés)