2. Kölcsönhatások.

Slides:



Advertisements
Hasonló előadás
W  és Z 0 bozonokatkeresünk az LHC CMS detektorában. A nagyon szerencsések pedig akár egy Higgs-jelölttel is találkozhatnak! Remélem izgalmas kaland.
Advertisements

Budapesti Műszaki Fősikola Fizika II. Horváth Árpád
Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 1/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári.
2. Kölcsönhatások.
Készítette: Bráz Viktória
Energia a középpontban
Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium Bemutatkozik a CERN 05 Novembre 2003.
Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 1/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári.
Atommag modellek.
A mikrorészecskék fizikája
A mikrorészecskék fizikája 2. A kvarkanyag
Tartalom Az atom fogalma, felépítése Az atom elektronszerkezete
Bevezetés a részecske fizikába
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Dr. Csurgai József Sugárzástan 1. Dr. Csurgai József
Az atommag.
Magfúzió.
Az anyagok alkotórészei
3. Gyorsítók CERN(Genf): légifelvétel. A gyorsító és a repülőtér.
Következik a Z-bozonnal történő részletes ismerkedés. Ez lesz a délutáni méréseik tárgya is ! Most igazán tessék figyelni és bátran kérdezni is ! Lesz.
Neutron az Ősrobbanásban
Kvarkok Leptonok Közvetítő Bozonok A mai nap főszereplői.
6. Nemzetközi Részecskefizikai Diákműhely MTA KFKI Részecske- és Magfizikai Kutatóintézet (RMKI) Budapest, március 3. A rendezvény szervezői:
3. Gyorsítók.
2. Kölcsönhatások Milyen „kölcsönhatásokra” utalnak a képen látható jól ismert események? A nagyon „tudományos” elnevezésük: Gravitációs Elekromágneses.
2. Kölcsönhatások.
Most pedig jöjjön a mai napunk sztárja: a J/  részecske!
Tartalom Az atom felépítése Az atom elektronszerkezete
Atomenergia.
Mit tudunk már az anyagok elektromos tulajdonságairól
Veszprémi Viktor Wigner Fizikai Kutatóközpont OTKA NK81447
HOGYAN CSINÁLJUNK KÁRTYÁBÓL HIGGS BOZONT? Csörgő T. 1 | 17 Csörgő Tamás MTA Wigner Fizikai Kutatóközpont wigner.mta.hu.
Az atommag 7. Osztály Tk
A mai nap programja (2008) 9.40 Megnyitó 9.40 Megnyitó előadás szünettel előadás szünettel ebéd ebéd Hunveyor-bemutató
A mai nap programja (2009) 9.40 Megnyitó, szervezési kérdések 9.40 Megnyitó, szervezési kérdések előadás szünettel előadás szünettel ebéd.
Bemutatjuk a híres/fontos W  és Z 0 Bozonokat Sheldon Glashow Steven WeinbergAbdus Salam Ők jósolták meg elméletileg. Nobel díj: 1979 Ők pedig felfedezték.
Előszó. „Olyan dolgokról fogok most Nektek beszélni amit a éves
2. Kölcsönhatások.
Kvarkok Leptonok Közvetítő Bozonok A mai nap főszereplői.
Az atommag szerkezete és mesterséges átalakítása
Az anyagok részecskeszerkezete
Csillagászati földrajz
1 A Standard modellen túl Készítette: Czövek Imre.
Bevezető a „Bevezetés a részecskefizikába” előadásokhoz
A 11. évfolyam fizika faktosainak előadása. Mit jelent az „őselem” és az „elemi részecske” kifejezés? A történelem folyamán milyen elképzelések születtek.
W  és Z 0 bozonokatkeresünk az LHC CMS detektorában.
Atommag és részecskefizika
2. Kölcsönhatások.
W  és Z 0 bozonokatkeresünk az LHC CMS detektorában. A nagyon szerencsések pedig akár egy Higgs-jelölttel is találkozhatnak! Remélem izgalmas kaland.
Albert Einstein   Horsik Gabriella 9.a.
Mindentud Június 15 Mottó: Te Gyuri! De őszintén, áruld már el nekem, hogy igazából mire jók azok a kvarkok. (88. évében levő Édesanyában állandó.
Az ősrobbanás Szebenyi Benő.
A radioaktivitás és a mikrorészecskék felfedezése
A kvantum rendszer.
Horváth Árpád, BMF ROIK A Világegyetem kohói Horváth Árpád, BMF ROIK
Elemi részecskék, kölcsönhatások
A NEHÉZSÉGI ÉS A NEWTON-FÉLE GRAVITÁCIÓS ERŐTÖRVÉNY
Az atommag alapvető tulajdonságai
05 Novembre év a részecskefizika kutatásban Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium.
Úton az elemi részecskék felé
A halott csillagok élete avagy van-e élet a fekete lyuk előtt? Barnaföldi Gergely Gábor, Wigner Intézet, Papp Gábor, ELTE TTK, Fizikai Intézet ELTE Budapest.
Részecskefizika Budapesti Műszaki Fősikola Fizika II. Horváth Árpád.
Gyorsítók Veszprémi Viktor ATOMKI, Debrecen
AZ ATOM FELÉPÍTÉSE.
FAZEKAS ANDRÁS ISTVÁN PhD c. egyetemi docens
I. Az anyag részecskéi Emlékeztető.
Magerők.
A) hidrogénizotóp (proton)_____1H1 B) hidrogénizotóp (deutérium)__1H2
W és Z0 bozonokat keresünk az LHC CMS detektorában.
Kémiai alapismeretek Ismétlés évfolyam.
Előadás másolata:

2. Kölcsönhatások

Gravitációs Elekromágneses Kölcsönhatás Milyen „kölcsönhatásokra” utalnak a képen látható jól ismert események? A nagyon „tudományos” elnevezésük: Gravitációs Elekromágneses Kölcsönhatás

Sir Isaac Newton esetét Kölcsönhatások. Amint láttuk a két legismertebb: Gravitációs: Elektromágneses: N S Jól ismert… lásd Sir Isaac Newton esetét az almával Elektromos és Mágneses jelenségek De hogyan jön létre köztük a “kölcsönhatás” ?

A kölcsönhatások mechanizmusa (1) Egy játékos analógia: A korcsolyázók közti kölcsönhatás (erő) „közvetítője” a kölcsönösen egymásnak dobott (cserélt) labda („részecske”)

A „játékos” analógiához hasonlóan minden kölcsönhatásnak A kölcsönhatások mechanizmusa (2) A „játékos” analógiához hasonlóan minden kölcsönhatásnak van egy (vagy több) közvetítő részecskéje!

Az elektomágneses kölcsönhatás és közvetítöje Elektromos és Mágneses jelenségek A közvetítő részecske a foton (-részecske)

2 újabb kölcsönhatást mutatunk be nektek. A következőben 2 újabb kölcsönhatást mutatunk be nektek. Ezek: az erős és a gyenge kölcsönhatások

Az erős kölcsönhatás és közvetítői: a gluonok. Az erős k.h. tartja össze az atommag protonjait/neutronjait és a nukleonok (proton/neutron) kvarkjait q Atommag proton kvark Gluon-csere kvark Az erős kölcsönhatás közvetítői a gluonok (8 db) A gluonok is „színesek”: 1 színt és 1 anti-színt „viselnek”

A gyenge kölcsönhatás és közvetítői 3 Nobel-díj Példa: neutron () bomlása: W- A kvarkok szintjén ez történik d→ u e- ne Neutron Proton A szabad neutron ~10 perc alatt a fenti módon elbomlik. A gyenge kölcsönhatás közvetítő részecskéi a W+,W- és Z0 (nehéz!) bozonok m  80-90 mproton

a neutrínókról meg a gyenge kölcsönhatásról! Egy perc két zseniről, a neutrínókról meg a gyenge kölcsönhatásról! A nap energiatermelésében az u.n. inverz béta-bomlásnak van fontos szerepe: Energia + proton  n + e+ +  Nem csak a Nobel - díj de megtisztelő bélyegek is...

n Az egész Univerzum csak kvarkokból és elektronokból állna? Univerzumunk leggyakoribb részcskéi a neutrínók! n Elektron, proton és a neutron „ritkaságok”! Ezek mindegyikére 1 milliárd neutrínó jut az Univerzumban. n n n n n nnnnnnnn nn n n nn n nnnnnnn n nn nn nn n n n n n nn n n nn n nnnnnn n nn nn nn nnnnnnn nn nn n nnn nnnnnnn Az űr minden cm3 –ben a Big Bang-ből eredő ~300 neutrínó található 1 cm 1 cm

n Neutrínók a bőrünk alatt is… Ne tessék aggódni! Másodpercenként 1014 „nap-neutrínó” éri testünket. n Földünk minden cm2-ét másodpercenként 1010 „nap-neutrinó éri el. Testünkön minden pillanatban ~30 millió a Big Bangből származó neutrinó szalad át. Ne tessék aggódni! A neutrínók nem bántanak bennünket. Testünk átlátszó a neutrínók számáara

a 4 kölcsönhatás és „közvetítőik” Összefoglaló: a 4 kölcsönhatás és „közvetítőik” (ezt a lapot is érdemes a fejükben feljegyezni!)

Kérdések a kölcsönhatásokról. IGEN / NEM válaszokat kérek Az IGEN válaszokat kézfeltartással jelezzék. Milyen részecskék közt hat az erős k.h.? a: csak kvarkok közt b: kvarkok és leptonok közt Milyen részecskék közt hat a gyenge k.h.? a: csak kvarkok közt b: csak leptonok közt c: kvarkok és leptonok közt

Az előző lapon látottakat (részecskék és kölcsönhatásaik) az u.n. Standard Modell foglalja elméleti egységbe. Ismétlésként rakjuk mindezeket 1 összefoglaló lapra Aki már nagyon elfáradt Vagy ismétlés nélkül is tudja nyugodtan kihagyhatja.

(kvark/lepton:fermion) A Standard modell részecskéi: Kvarkok/Leptonok + Közvetítők 24 „anyagi” részecske (kvark/lepton:fermion) 12 közvetítő (bozon) Közvetítő kvark/lepton g foton gluon Z bozon W ± Közvetítők u c t up charm top Kvarkok d s b down strange bottom e m t Kölcsönhatások közvetítői: Erős: 8 gluon Elektromágneses:  Gyenge: W+,W-,Z0 elektron müon tau Leptonok n n n e m t 3 * 6 = 18 kvark + 6 lepton (+ 24 anti-részecske) [Spin = ½ (Fermionok)] g, 8 gluon,W+,W-,Z0 [Spin = 1 (Bozonok)]

de eddig még ismeretlen részecskéiről ejtünk néhány szót. A következő két lapon a világ legdrágább de eddig még ismeretlen részecskéiről ejtünk néhány szót. A Nagy Hadron Ütköztetőn (LHC: Large Hadron Collider) folyik felkutatásukra az izgalmas vadászat. A nagyon konkrét célok: A Higgs bozon Szuperszimmetrikus (SUSY) részecskék És talán valami egészen új is… Költségek: LHC (mint „vadászfegyver”) + Detektorok: ALICE, ATLAS, CMS (mint „töltények”) ~10 milliárd €

Valami még hiányzik…mondják az elméletiek Avagy egy nagyon keresett részecske: a Higgs bozon A standard modell nagyon okos és sokféle matematikai szimmetriájával „szép” is. Van azonban egy komoly hiányossága: a benne szereplő részecskékre nulla tömeget adnak a számítások. Egy további részecske, a Higgs-bozon/Higgs-tér bevezetésével tömeghez jutnak a részecskéink. Személyleírása: Nagy tömegü (mH ~ több mint 100 GeV) Spinje = 0 Elektromos töltése = 0 [várhatóan felbukkan az LHC-ben!] Élettartama: igen rövid (bomlékony: ezért csak a bomlástermékei alapján azonosítható!) A megtaláló/kitaláló jutalma: Nobel díj!

Keresd a SUSY-t! Szuperszimmetrikus részecskékkel ezidáig még nem találkoztunk. Talán mert Ők nehezebbek mint megszokott „világi” partnereik? Ennek a kérdésnek a megfejtésében is segít majd a Szupergyorsító (LHC: Large Hadron Collider Nagy Hadron Ütköztető). De legyünk óvatosak: lehet, hogy a „Szuzi” sem tökéletes? Szárnyaljon hát a fantázia: az igazi megoldást esetleg a megszokott 3+1 dimenziós világunkon túl kell keresni?

Az egyenletek bonyolódnak, egyre csak bonyolódnak… avagy a fantázia tovább szárnyal

A húr-elméletben az elemi részecskék (elektron, kvarkok) Fantáziáljunk tovább: sokdimenziós Húr-elmélet Why wouldn’t we notice extra dimensions? A húr-elméletben az elemi részecskék (elektron, kvarkok) a sokdimenziós tér apró „húrjainak” rezgés-állapotai

És a miből áll a Világegyetem? Ismerjük? Valójában csak egy kicsi részét… Talány az ismeretlen „sötét” energiában, „sötét” anyagban van? ? ?

maradt elég felfedezni való Maguknak is! A történetnek tehát nincs vége: maradt elég felfedezni való Maguknak is! (van még elég a kasszában a Nobel díjakra) Hurry Up!

A szünet után a gyorsítókról és a detektorokról fogunk beszélgetni