Kvantitatív módszerek

Slides:



Advertisements
Hasonló előadás
Nevezetes eloszlások, normál eloszlás
Advertisements

I. előadás.
II. előadás.
Kvantitatív Módszerek
3. Két független minta összehasonlítása
Statisztika feladatok Informatikai Tudományok Doktori Iskola.
Főkomponensanalízis Többváltozós elemzések esetében gyakran jelent problémát a vizsgált változók korreláltsága. A főkomponenselemzés segítségével a változók.
Összefüggés vizsgálatok
Becsléselméleti ismétlés
Összefüggés vizsgálatok x átlag y átlag Y’ = a + bx.
Gazdaságelemzési és Statisztikai Tanszék
STATISZTIKA II. 5. Előadás Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék.
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Mintavétel Mintavétel célja: következtetést levonni a –sokaságra vonatkozóan Mintavétel.
Statisztika II. VI. Dr. Szalka Éva, Ph.D..
Regresszió és korreláció
Dr. Szalka Éva, Ph.D.1 Statisztika II. IX.. Dr. Szalka Éva, Ph.D.2 Idősorok elemzése.
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Statisztika II. II. Dr. Szalka Éva, Ph.D..
Ozsváth Károly TF Kommunikációs-Informatikai és Oktatástechnológiai Tanszék.
III. előadás.
Lineáris korreláció és lineáris regresszió. A probléma felvetése y = 1,138x + 80,778r = 0,8962.
PTE PMMK Matematika Tanszék dr. Klincsik Mihály Valószínűségszámítás és statisztika előadások Gépész-Villamosmérnök szak BSc MANB030, MALB030 Bevezető.
Regresszióanalízis 10. gyakorlat.
Kvantitatív módszerek 7. Becslés Dr. Kövesi János.
Statisztika II. VIII. Dr. Szalka Éva, Ph.D..
Dr. Szalka Éva, Ph.D.1 Statisztika II. VI.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Kvantitatív módszerek
Kvantitatív módszerek 8. Hipotézisvizsgálatok I. Nemparaméteres próbák Dr. Kövesi János.
A statisztikai próba 1. A munka-hipotézisek (Ha) nem igazolhatók közvetlen úton Ellenhipotézis, null hipotézis felállítása (H0): μ1= μ2, vagy μ1- μ2=0.
Matematikai statisztika Készítették: Miskoltzy Judit Sántha Szabina Szabó Brigitta Tóth Szabolcs Török Tamás Marketing Msc I. évf., I. félév, levelező.
Kvantitatív Módszerek
Kvantitatív módszerek
Kvantitatív módszerek
Idősor elemzés Idősor : időben ekvidisztáns elemekből álló sorozat
Gazdaságstatisztika Korreláció- és regresszióelemzés 20. előadás.
Gazdaságstatisztika 16. előadás Hipotézisvizsgálatok Alapfogalamak
Hipotézis vizsgálat (2)
Következtető statisztika 9.
Hipotézis-ellenőrzés (Folytatás)
A sztochasztikus kapcsolatok (Folyt). Korreláció, regresszió
Alapsokaság (populáció)
Várhatóértékre vonatkozó próbák
Lineáris regresszió.
t A kétoldalú statisztikai próba alapfogalmai
Két kvantitatív változó kapcsolatának vizsgálata
A klinikai transzfúziós tevékenység Ápolás szakmai ellenőrzése
Hipotézisvizsgálat v az adatforrás működési “mechanizmusát” egy véletlen eloszlás jellemzi v az adatok ismeretében megfogalmazódnak bizonyos hipotézisek.
I. előadás.
TÁRSADALOMSTATISZTIKA Sztochasztikus kapcsolatok II.
Valószínűségszámítás - Statisztika. P Két kockával dobunk, összeadjuk az értékeket Mindegyik.
Petrovics Petra Doktorandusz
Kvantitatív módszerek
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Regresszió-számítás március 30. Dr. Varga Beatrix egyetemi.
Valószínűségszámítás II.
Korreláció-számítás.
Bevezetés, tippek Ea-gyak kapcsolata Statisztika II -más tárgyak kapcsolata Hogyan tanulj? Interaktív órák, kérdezz, ha valami nem világos! tananyag =előadások.
Gazdaságstatisztika Gazdaságstatisztika Korreláció- és regressziószámítás II.
Korreláció, regresszió
Lineáris regressziós modellek

Kvantitatív módszerek
II. előadás.
Becsléselmélet - Konzultáció
Gazdaságstatisztika Konzultáció a korreláció- és regressziószámítás, idősorok elemzése témakörökből.
I. Előadás bgk. uni-obuda
III. előadás.
Dr. Varga Beatrix egyetemi docens
2. Regresszióanalízis Korreláció analízis: milyen irányú, milyen erős összefüggés van két változó között. Regresszióanalízis: kvantitatív kapcsolat meghatározása.
Dr. Varga Beatrix egyetemi docens
Előadás másolata:

Kvantitatív módszerek 4. Korreláció- és regressziószámítás I. Dr. Kövesi János

Determinisztikus és sztochasztikus kapcsolatok 56 Determinisztikus és sztochasztikus kapcsolatok A korreláció- és regresszió- számítás során arra keressük a választ, hogy egy adott állapot milyen tényezők hatására jött létre, az egyes tényezők milyen mértékben befolyásolják a jelenség alakulását, a tényezők milyen szoros kapcsolatban vannak egymással. A korrelációs és regressziós számítás a kapcsolatot jellemzi, de semmit nem mond az oksági viszonyról. Tehát két, vagy több változó közötti sztochasztikus kapcsolat megállapításából nem következik, hogy a változók oksági összefüggésben vannak, azaz, hogy egyik tényező változása oka a másik tényező változásának. Az oksági kapcsolatot csak alapos szakmai és statisztikai vizsgálattal lehet megállapítani. 

A kapcsolat szemléltetése 57 A kapcsolat szemléltetése 3 2 1 - P o z i t í v k r e l á c ó R S q = 6 . 5 % Y 8 E + 9 X - 3 2 1 N e g a t í v k o r l á c i ó Y = 5 . 7 E 6 4 8 X R S q 9 % - 3 2 1 4 N e m l i n á r s k o c ó Y = . 9 5 8 + 6 7 X * R S q % - 2 1 3 N i n c s k o r e l á ó Y = 7 . 4 E + 8 X R S q % 3 2 1 - P o z i t í v k r e l á c ó R S q = 6 . 5 % Y 8 E + 9 X - 3 2 1 N e g a t í v k o r l á c i ó Y = 5 . 7 E 6 4 8 X R S q 9 % - 2 1 3 N i n c s k o r e l á ó Y = 7 . 4 E + 8 X R S q % - 3 2 1 4 N e m l i n á r s k o c ó Y = . 9 5 8 + 6 7 X * R S q % 

Az előjel–korrelációs együttható 58-59 Az előjel–korrelációs együttható Feladat: 14 év adatai alapján vizsgáljuk meg az 1 ha szántóterületre vonatkoztatott műtrágya felhasználás (xi=kg/ha) és az évi búza termés átlagok (yi=q/ha) közötti kapcsolatok jellegét és szorosságát. 71 , 14 2 12 = - e r 

A (lineáris) regresszió és korreláció 60 A (lineáris) regresszió és korreláció A regresszió számítás feladata a változók közötti összefüggés jellegének meghatározása. Ennek során a pontdiagramos ábrázolással érzékeltetett tendenciát valamilyen analitikusan ismert függvénnyel próbáljuk leírni. A regressziós függvényt a legkisebb négyzetek elve és módszere alapján határozzuk meg. Ez azt a követelményt támasztja, hogy az adott függvénytípust (egyenes, parabola, exponenciális, stb.) használata során a összeg minimális legyen. Az eltérések (rezidiumok) négyzeteinek összege jól jellemzi a ponthalmaz és a regressziós vonal kölcsönös viszonyát. 

A (lineáris) regresszió és korreláció 63 A (lineáris) regresszió és korreláció A korrelációs együttható értéke nulla, ha X és Y függetlenek. Ez fordítva általában nem igaz: abból, hogy két valószínűségi változó korrelációs együtthatója nulla, nem feltétlenül következik, hogy a két változó független is egymástól (kivétel, ha X és Y együttes eloszlása normális). Ha a két változónál csak azt tudjuk, hogy r(x,y)=0, akkor korrelálatlannak nevezzük őket. 

A (lineáris) korrelációs együttható 63 A (lineáris) korrelációs együttható Az elméleti korrelációs együtthatót a mintabeli, tapasztalati korrelációs együtthatóból becsülhetjük: ahol: és 

64 Feladat: Számítsuk ki a mintapéldában szereplő változó korrelációs együtthatóját! Emlékeztetőül: az előjel – korrelációs együttható értéke 0,71 volt. 

Auto- és keresztkorreláció idősorok elemzése 65 Auto- és keresztkorreláció idősorok elemzése 1 2 3 4 5 6 7 8 9 10 -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 Autocorrelation 0,09 0,05 -0,06 -0,01 -0,05 -0,02 0,01 0,10 0,02 0,08 3,09 1,68 -2,11 -0,22 -1,65 -0,53 0,45 3,39 0,54 2,85 9,58 12,45 17,02 17,07 19,90 20,19 20,40 32,36 32,67 41,30 Lag Corr T LBQ BUX napi adatok autokorrelációja '94 -'99 

Kvantitatív módszerek 11. Korreláció- és regressziószámítás II. Dr. Kövesi János

A (lineáris) korrelációs együttható 142 A (lineáris) korrelációs együttható A korrelációs együttható értéke nulla, ha X és Y függetlenek. Ez fordítva általában nem igaz: abból, hogy két valószínűségi változó korrelációs együtthatója nulla, nem feltétlenül következik, hogy a két változó független is egymástól (kivétel, ha X és Y együttes eloszlása normális). Ha a két változónál csak azt tudjuk, hogy R(X,Y)=0, akkor korrelálatlannak nevezzük őket. 

A (lineáris) korrelációs együttható 143 A (lineáris) korrelációs együttható Az elméleti korrelációs együtthatót a mintabeli, tapasztalati korrelációs együtthatóból becsülhetjük: ahol: és 

A (lineáris) korrelációs együttható szignifikancia vizsgálata 143 A (lineáris) korrelációs együttható szignifikancia vizsgálata Ho: R (X, Y) = 0 A két változó egymástól független normális eloszlású Ha H0 igaz, akkor r(x,y) alábbi függvénye DF=n-2 szabadság fokkal t - eloszlást követ: Ha adott  mellett tsz>tkrit, akkor H0-t elvetjük és =1- megbízhatósággal állíthatjuk, hogy a két változó között sztochasztikus kapcsolat áll fenn. 

A (lineáris) korrelációs együttható 143 A (lineáris) korrelációs együttható Feladat: Számítsuk ki a mintapéldában szereplő változó korrelációs együtthatóját és végezzük el a szignifikancia vizsgálatot! Ho: R (X, Y) = 0 DF= n-2 =14-2 = 12  =0,05 tkrit = 2,17 Mivel tsz  tkrit, ezért a nullhipotézist elvetjük és nagy biztonsággal állíthatjuk, hogy a két változó között korrelációs (sztochasztikus) kapcsolat van. (Emlékeztetőül: az előjel – korrelációs együttható értéke 0,71 volt). 

Az r(x,y) és a regressziós egyenes összefüggése 144 Az r(x,y) és a regressziós egyenes összefüggése Az r2 (x, y) – amelyet determinációs együtthatónak is neveznek – azt fejezi ki, hogy a sztochasztikus kapcsolatban a teljes változás hányad része tulajdonítható x-nek. Értékét %-os formában is megadhatjuk. 

144 Feladat A mintapélda adatai alapján határozzuk meg a determinációs index értékét! Az eredményt úgy értelmezhetjük, hogy a termésátlagok változásában a műtrágya felhasználás 72%-ban játszott szerepet. 

A regressziós becslés pontossága 145 A regressziós becslés pontossága Nyilvánvaló, hogy a sztochasztikus kapcsolat mérőszámaiból csak akkor vonhatunk le helyes következtetéseket, ha megfelelően nagy mintánk van. Így, az eredmények értékeléséhez hozzátartozik a mérőszámok hibájának vizsgálata is. A pontosság jellemzése céljából tehát most az a, b, paraméterek becslésének szórását (standard hibáját) kell meghatároznunk: 1. A regressziós együtthatók standard hibái (pontbecslés). 2. Konfidencia intervalluma becsült paraméterekre. 3. A lineáris kapcsolat szignifikancia vizsgálata. 4. Az átlagos, vagy az egyedi yi értékek becslése. 

1. A regressziós együtthatók standard hibái (pontbecslés). 145 1. A regressziós együtthatók standard hibái (pontbecslés). A standard hibák azt mutatják meg, hogy végtelen sok n elemű mintát véve az alapsokaságból az egyes mintákból becsült b0 és b1 paraméterek átlagosan sb0 és sb1 egységgel szóródnak az alapsokasági regressziófüggvény körül. 

2. Konfidencia intervallum a becsült paraméterekre 145 2. Konfidencia intervallum a becsült paraméterekre A becsült paraméterekre konfidencia intervallumokat is konstruálhatunk. Nagy minták esetén normális eloszlás táblázatot-, kis minták esetén a Student-eloszlás t- táblázatát használjuk (DF= n-2): 

3. A lineáris kapcsolat szignifikancia vizsgálata 146 3. A lineáris kapcsolat szignifikancia vizsgálata t- próba segítségével azt is ellenőrizhetjük, hogy az Y és X változók között szignifikáns lineáris kapcsolat van-e. Nullhipotézisünk és ellenhipotézisünk: A próbastatisztika: A tkrit értéket  szignifikancia szinten DF=n – 2 szabadsági foknál találjuk meg. Ha tsz tkrit, elvetjük Ho-t és valós lineáris összefüggést tételezünk fel X és Y között. 

4. Az átlagos, vagy az egyedi yi értékek becslése 147 4. Az átlagos, vagy az egyedi yi értékek becslése 

148 Feladat Korábban már többször foglalkoztunk a BUX havi hozamainak statisztikai elemzésével (leíró statisztika, hipotézisvizsgálatok). Az alábbi táblázat alapján vizsgáljuk meg, hogy az 1998. VII.-1999.VI. közötti időszakban a havi hozam (%) alapján kimutatható-e sztochasztikus kapcsolat a BUX és a Zwack hozamai között? Adjunk – előzetes – szakmai magyarázatot az eredményekre! 

149 Feladat A diagram és/vagy a táblázat alapján határozzuk meg az előjel – korrelációs együtthatót! Határozzuk meg a tapasztalati korrelációs együtthatót és  = 5 % mellett végezzük el a szignifikancia vizsgálatot! Következtetés: tsz > tkrit Ho: R(x,y) = 0 DF = 12-2 = 10  = 5% H0 nem igaz ! tkrit = 2,23 

Feladat Következtetés:  149 Becsüljük meg a lineáris regressziófüggvény együtthatóit! Határozzuk meg a determinációs együtthatót és értelmezzük az eredményt! Következtetés: A Zwack hozamának változásában a BUX hozama 46,2 %-ban játszott szerepet. 

Feladat 23 , 2 = t  Következtetés: 150 Feladat Határozzuk meg a regressziós becslés pontosságát! se = 7,47 sb0 = 2,157 sb1 = 0,143 Készítsünk 95 %-os konfidencia intervallumot a becsült paraméterekre!  = 5% 23 , 2 1 = - a t Int(1-α)(βo) = 1,47  4,841 Int(1-α)(β1) = 0,463  0,32 Ellenőrizzük  = 5 % mellett, hogy a lineáris kapcsolat szginifikáns-e? DF = 10 tsz = 3,24 tkrit = 2,23 Következtetés: Mivel tsz >tkrit a H0 (β1=0) nem igaz, tehát x és y között szignifikáns lineáris kapcsolat van. 