Passzívházak, autonóm házak és települési stratégiák

Slides:



Advertisements
Hasonló előadás
Energetikai projektek előkészítése, finanszírozása M27 ABSOLVO Consulting.
Advertisements

Zéró CO2-Fenntartható Építészet ZÖLD BERUHÁZÁSI RENDSZER Dióssy László címzetes egyetemi docens szakállamtitkár Budapest november 5.
Energiaköltségek optimalizálása
Energiahatékonyak vagyunk? Szabó Valéria projektmenedzser.
ROBUR Gázbázisú abszorpciós Hőszivattyúk
XI. MRTT vándorgyűlés Pálné Schreiner Judit Kaposvár, 2013.november A Szigetvári Gyógyfürdő ma és holnap.
K ÖZÖSSÉGEK FENNTARTHATÓ ENERGIAPOLITIKAI ESZKÖZEINEK FEJLESZTÉSE JÚNIUS JÚNIUS JÚNIUS JÚNIUS JÚNIUS
Megújuló energiaforrások Napenergia hasznosítása
Tesco a zöld Magyarországért Műszaki megoldások a fenntartható fejlődés szolgálatában Szentendre Dézsi Ferenc műszaki és fenntartási igazgató.
Modern technológiák az energiagazdálkodásban - Okos hálózatok, okos mérés Haddad Richárd Energetikai Szakkollégium Budapest március 24.
Út a napenergia hasznosítás felé, avagy sikerek és nehézségek az önkormányzatokkal való együttműködésben.
Fenntartható energiagazdálkodással az éghajlatváltozással szemben: retorika vagy realitás? Budapesti Műszaki és Gazdaságtudományi Egyetem Környezetgazdaságtan.
Tartalom Megújuló energiaforrások a távfűtésben és decentralizált rendszereknél Pályázati lehetőségek Egy biomassza alapú távhő projekt bemutatása.
Az Észak-Alföldi régió energiastratégiája
Egy kis település lehetőségei a környezet- tudatossá válás útján napjainkban Pirtyák Zsolt Lajoskomárom polgármestere.
1 PV helyzetkép Az NCsT felülvizsgálata a napelemes trendek tükrében Horváth Attila Imre helyettes államtitkár Zöldgazdaság Fejlesztéséért, Klímapolitikáért.
Megújuló energiaforrások otthon Út egy környezettudatosabb otthon felé Misli Bence I. Béla Gimnázium, Szekszárd.
Jób Viktor Rába Energiaszolgáltató Kft. ügyvezető
A napenergia-piac jellemzői Magyarországon
Török Ádám Környezettudatos Közlekedés Roadshow,
Fűtéskorszerűsítési projektek energetikai befektetővel Magyar Fenntarthatósági Csúcs – 2012 Budapest, Szigeti László – Energetikai szaktanácsadó.
ÚJ KIHÍVÁSOK, ALTERNATÍVÁK A FENNTARTHATÓSÁG ÚTJÁN „LEGYEN SZÍVÜGYÜNK A FÖLD!” Nukleáris energiatermelés a fenntarthatóság jegyében Bátor Gergő.
Lakáspolitika és fenntarthatóság
A Magyar Természetvédők Szövetsége az Éghajlatváltozási Stratégiáról Farkas István, ügyvezető elnök Magyar Természetvédők Szövetsége Föld Barátai Európa.
Fosszilis vs. megújuló Gazdaságossági szempontok
A jövő és az energia Mi lesz velem negyven év múlva ? Mivel fogok közlekedni ? Fázni fogok otthon vagy melegem lesz ?
FENNTARTHATÓ ÉPÍTÉSZET
Készítette: Gáti-Kiss Dániel Témakör: Energiagazdálkodás
Környezet- és emberbarát megoldások az energiahiányra
2. AZ ENERGETIKA ALAPJAI.
Az alternatív energia felhasználása
Az alternatív energia felhasználása
Passzívházak épületgépészeti rendszerei
Passzívház Az Első hivatalos passzívház Németországban került megépítésre.
Megújuló energiaforrások Felkészítő tanár: Venyige Judit
Energiatermelés? Energia-átalakítás! Nap – hő – elektromos – kémiai
Pécs május 13. Erdészeti biomassza használat és a jövő alternatív tüzelőanyagai - jelen helyzet, lehetőségek, veszélyek - dr. Német Béla, Csete Sándor,
1 A magyar energiapolitika „ Az energiahatékonysági indikátorok az EU-ban és Magyarországon” nemzetközi szeminárium Budapest, október 5. Hatvani.
Jut is, marad is? Készítette: Vígh Hedvig
Biomassza Bajnokság Magyarországon Kovács Emese ENERGIAKLUB Szakpolitikai Intézet és Módszertani Központ „Biomasszát fenntarthatóan” c. Konferencia Gödöllő,
Geotermikus erőművek létesítésének lehetőségei Magyarországon
Lorem ipsum. KEOP-OS ENERGETIKAI PÁLYÁZATI LEHETŐSÉGEK Horváth Péter július 11. Fórum - Hosszúhetény.
A fenntartható település
Megújuló energiaforrások – Lehetőségek és problémák
AZ ÉGHAJLATVÁLTOZÁS VESZÉLYE ÉS A HAZAI KLÍMAPOLITIKA Szabó Imre miniszter Környezetvédelmi és Vízügyi Minisztérium február 27.
Civin Vilmos MVM Zrt. „Klímacsúcs” Budapest, február 27. Klímaváltozás és egy állami tulajdonú villamos társaság.
„Megújuló energia-megújuló vidék” Az agrárgazálkodás lehetőségei a zöld energia előállításában Kovács Kálmán államtitkár Tájékoztató Fórum, Nagykanizsa.
Megújuló energetika  EU külső energiaforrásoktól való függése 50%-ra csökkent 1999-re  EU cél: 2020-ra 20%-ra növelni a megújuló részarányát a teljes.
A tartamos erdőgazdálkodás és a faenergetika optimális kapcsolata „A biomassza felhasználásának formái” Budapest, október 25. Jung László vezérigazgató-helyettes.
„Megújuló energiaforrások a térségfejlesztés szolgálatában” Gulyás Gréta 12.a Bartha Szabolcs 10.a Hegedűs Márton 10.a Gyöngyösi József Attila Szakközépiskola,
Az alternatív energia felhasználása
Energiahatékonysággal a költségcsökkentés és a minőségi üzletvitel érdekében.
Energiahatékonysággal a költségcsökkentés és
TAB Város és a megújuló energiára alapozott oktatás Schmidt Jenő Tab Város Polgármestere 1.
MEGÚJULÓ ENERGIA A MAGYAR ENERGIAPOLITIKÁBAN előadó: Ámon Ada Energy Summit – Gerbeaud Ház Budapest, november 25.
Mitől innovatív egy vállalkozás?
Városi külső energia bevitel csökkentésének lehetőségei Energetikus energetikusok 2015 Csató Bálint Kaszás Ádám Keszthelyi Gergely.
Város energetikai ellátásának elemzése
ZÖLDEK Klaszter Nemzetközi Konferencia A megújuló energia jövője a Közép-dunántúli régióban Edutus Főiskola,
A fenntartható település Előadó: Ertsey Attila építész, a KÖR Építész Stúdió munkatársa, a KÖR Építész Stúdió munkatársa, a Független Ökológiai Központ.
Üveg- és fóliaházak létesítése, energiahatékonyságának növelése geotermikus energia felhasználásának lehetőségével.
Tőkés Napenergia hasznosítási körkép ZÖLDEK Klaszter Nemzetközi Konferencia szeptember 12–13., Tatabánya EUSOL.
NAPELEM MINT ALTERNATÍV ENERGIAFORRÁS. MIRE VALÓ A NAPELEM? Hiedelem = melegvíz termelés Valódi alkalmazás = elektromos áram termelés Felhasználás: közvetett,
Környezet és Energia Operatív Program Várható energetikai fejlesztési lehetőségek 2012-ben Széchenyi Programirodák létrehozása, működtetése VOP
Energetikai célú pályázatok rövid áttekintése Gajzágó Gergő programmenedzser május 19.
Miskolc város energetikai fejlesztései Geotermikus alapú hőtermelés Kókai Péter projektmenedzser.
„Erre van előre” Magyarország energetikai jövőképe Dr. Munkácsy Béla adjunktus (ELTE TTK)
Dr. Stróbl Alajos (ETV-ERŐTERV)
160 Mrd Ft energetika. Megjelent a KKV szektor megújuló épületenergetikai beruházásait támogató pályázati felhívás!
Megújuló energia a megújuló borsodi ártéren
Előadás másolata:

Passzívházak, autonóm házak és települési stratégiák Ertsey Attila KÖR Építész Stúdió kft. 2011 november 25, Francia Intézet

Kihívások - 2012 Olajcsúcs energiaéhség, energiaszegénység Paks bővítése: atomjövő vagy megújuló? Árvíz és aszály Gazdasági válság adósságválság egyéni, önkormányzati és állami közműhátralékosok devizahitel-károsultak tömege

Megoldások Új energetikai szabályozás 2020-tól „Nearly Zero” épületek, A+++ „Közel Nullás” épület megvalósítható: passzívházból: 15 kWh/m2év, A++ Alacsony Energiaigényű Házból: 40-80 kWh/m2év, A+ Új energiastratégia Autonóm házak + elektromos autók A+++ közel nullás A++ passzívház

Grid parity Grid parity (hálózat-paritás) az a küszöbérték, melynél az alternatív áramtermelés módszerei legalább olyan olcsók, mint a hálózati áram. (Wikipedia) A napból termelt elektromosság teljeskörű költsége 2009-ben $ 0.25/kWh (50 Ft – ez a hazai lakossági tarifával megegyezik) volt a legtöbb OECD országban. 2011 végére ez leesett $ 0.15/kWh (30 Ft) alá a legtöbb OECD tagállamban és eléri a $ 0.10/kWh (20 Ft) értéket naposabb régiókban (ma < 6 eorocent/W) Az USA Energiaügyi Minisztériumának prognózisa 2016-ra: 6 cent/kWh (12 Ft) A grid parity Németországban 2012-re várható, Magyarországon 2016-ra a német gazdasági minisztérium adatai szerint. Ez demokratizálja és forradalmasítja az áramtermelést, az energiamonopólium megszűnik. 1 lakás bruttó 1 kW beruházásigénye M.o.-on 2010-ben: 1 mFt + ÁFA 3,75 mFt(100%) 1 kW beruházásigénye M.o.-on 2011-ben: 0,8 mFt + ÁFA 3,0 mFt (-20%!) Becsült elérhető csökkenés 2016-ra: cca. 450 eFt + ÁFA 1,68 mFt(-55%) Becsült elérhető csökkenés 2050-re: cca. 200 eFt + ÁFA 750 eFt(-75%) De! 1 kW beruházásigénye M.o.-on 2012-ben: 0,5 mFt + ÁFA 1,9 mFt (-50%!) 2 év alatt 50 % áresés! Tehát már ma elértük!

Országos energiastratégia: megújulók vs Országos energiastratégia: megújulók vs. atom Paks bővítése: új 2,5 GW-os blokk, 2500 mrd Ft, 10 év, a magyar villamosenergia-igény 80 %-a Paksról, egy lábon álló, központosított energiarendszer, 2020-tól urán kitermelési csúcs, utána rohamosan emelkedő uránár, 2020 után az atomenergia lesz a legdrágább, a befektetői érdeklődés az atomenergia iránt = 0; 2011: 2500 mrd/1 mft=2,5 GW/ 1 év; 2012-13: 2500 mrd/500 eft=5 GW/ 1 év = 100 %- Geotermia - felszínközeli hasznosítás: termálvíz, fűtés, kaszkád-rendszer - mélyfúrás (3 km): HDR technológia, nagyerőmű – alkalmas a fosszilis és nukleáris erőművek kiváltására, kimeríthetetlen energiaforrás, nincs hulladék Smart grid (Greenpeace Energiaforradalom) - német energiapolitika: decentralizált energiarendszer, több ezer kiserőmű, intelligens hálózattal összekötve, néhány gyors indítású (gáz)erőművel - atomerőművek lassú kivezetése a rendszerből Vehicle to Grid (V2G) rendszer: csúcserőmű helyett a parkoló elektromos autók akkumulátorából levett energia 2011 április

Fenntarthatóság és autonómia Energiatakarékosság Passzív ház Passzív hűtés Megújulók használata nap, szél, víz, geotermia Emisszió: Zéró CO2 Fenntartható vízhasználat Körfolyamatok, egyensúly Energetikai önellátás Klimatikus fenntarthatóság - zöldfelületek

Autonóm Ház Millenáris Park 2009 szeptember 16 - december 30. Comfort Budapest, SYMA csarnok, 2010 február 10-12 Construma, 2010 április 14-18, 2011 április Ökotech, 2010 május BNV, 2010 ősz

Mai kertvárosi osztrák passzívház alaptípus F + 1, extenzív zöldtetővel energetikai önellátás, hőszivattyús fűtés és melegvíz tornácszerű árnyékolás lemezalap, könnyűszerkezet

Velux Aktívház, Pressbaum, Ausztria 2010 július 22

Mennyibe kerül egy Autonóm Ház? 130 m2-es lakóház ÉTK 2010: nettó 229 eFt/m2 cca. bruttó 37 mFt Első minősített passzívház: bruttó 230 eFt/m2 cca. bruttó 30 mFt Autonóm Ház Konzorcium ajánlott terv: AEH vagy PH lakóház bruttó 37 mFt + Autonóm csomag 5 mFt - ZBR támogatás 5 mFt 37 mFt egy 130 m2-es Autonóm Ház ára bruttó 37 millió forint Ezért cserébe kapunk egy olyan házat, amely független a hálózatoktól. Megtérülési idő támogatás nélkül: 8-10 év!

Aktívház

Autonómház A szimuláció szerint 6 kW-os Wamsler tűzhellyel kifűtve 18,5 C-t biztosít a szobákban, 20 C-t a központi lakótérben, 22 C a fürdőben, de félteljesítményre, 3 kW-ra állítva is elegendő lehet. (Reith A.)

Passzív szellőzés szél- és szolárkéménnyel Gépészete: Velux vagy Bramac napkollektoros HMV-rendszer, a bojlerbe kötött vízteres Wamsler W1 toldaléktűzhely, külső levegőellátással. Passzív szellőzés, gravitációs szél- és szolárkéménnyel, frisslevegő bevezetés télikertből, manuálisan szabályozott légbeeresztő szelepekkel. PV felülete 10 db Velux vagy Bramac modul, azaz 17 m2, 2,4 kW, mely a háztartási áram fedezésére elegendő. Bővíthető felülete jelentős, közlekedésre fordítható.

Autonómház

Magyarkút, alacsonyenergiás ház Építész: Medgyasszay Péter Épület jellege: 110 m2 hasznos alapterület két szinten Helyszín: Magyarkút (hidegzúg, -3-4°C) Belső hőmérséklet: 19-24 °C Fűtés módja: kályhakandalló, valamint tartalékfűtésként gázkazános felületfűtés HMV készítés módja: gázkazán 2009-2010 fűtési időszakban fogyasztás: 24 q fa, 220 m3 gáz (80-90 eFt/év) Légtömörség: 5,2 Fűtés primer energiaigénye: 37 kWh/m2a Bekerülési költség: 180 eFt/m2 2012 március

AUTONÓM HÁZ AZ ALPOKBAN Tervező: Andrea Deplazes Fenntarthatóság minden szinten a jövő autonóm háza alternatív energiák hasznosítása extrém körülmények nincsenek közművek, utak a hulladékot sem viszik el a háztól a napenergia és a gravitáció kihasználása szuperszigetelés, légtömörség hővisszanyerés passzívház-technológia

A szalmaház 50 cm szalmafal U-értéke: 0,13 W/m2K Beépített energiatartalma: 24,7 kWh/m2 (korszerű falazóblokk: 228 kWh/m2) Bioépítőanyag Ára alacsony: helyi építőanyag, olcsó előállítás, sajáterős építés lehetősége Életciklusa végén a természetbe olvad

Egy szalmaház építése 2009

Holcim Roadshow 2010

Ócsai szociális bérlakás-együttes MÉK szakértői javaslat: egyedi, épületenkénti megoldás A+ energiaosztályú (alacsony energiaigényű épületek, 40-80 kWh/m2év), max. fűtési hőigény 6 kW 110 m2-ig központi fűtés nélkül működtethető, egy fűtőberendezéssel tűzhelykazán (fűtés, főzés, HMV, külső levegőellátás, nyáron villanytűzhely) napkollektor (HMV) napelem (áramtermelés) melegvizes puffertartály (hőtárolás) inverter (megtermelt áram hálózati betáplálás) ciszterna helyi növényi tisztító smart grid, Bükk-Mak-Leader csoport elektromos töltőállomás és kisbusz 8 % többletköltségért „Nearly Zero” Wamsler 100 % magyar tűzhelyek-tűzhelykazánok, passzívházhoz is illeszthető, 6/3 kW teljesítménnyel

Zöld Pont – passzív-autonóm irodaház Célkitűzések: Energetikai önellátás Alacsony beépített energiatartalom Önellátó vízhasználat talajvíz + esővíz szürkevíz visszaforgatással Klimatikus egyensúly (zöldfelület > 80%) Passzív szellőzés lehetősége áramszünet és elektronikai zavarok esetén – klímahomlokzat és szellőzőkémény

Zöld Pont – passzív-autonóm irodaház Áramellátás nap- és szélenergiával Passzív hűtés-fűtés talajkollektorral Hőellátás napenergiával és hőszivattyúval Ertsey Attila

Jó tájolás Kompakt tömeg: A/V tényező 0,278 m2/m3 Hő- és napvédelem Klimatikusan fenntartható épület: 98 % zöldfelület Klímahomlokzat Elérhető energetikai autonómia Ertsey Attila

Passzívházak - autonóm házak Centaurus szárazpissoire 1 liter WC Mini Flush Kézmosóvízből öblítővíz: 1 kézmosás = 2 l víz 2 l víz = 2 öblítés (Toto – Japán) Passzívházak - autonóm házak

Áramellátás Energiatakarékosság: A természetes megvilágítás az irodai területeken 100 %-ban biztosított, a belső helyiségeket (vizesblokk, közlekedőmag) kivéve. Energiatakarékos fogyasztókat alkalmazunk (világítás, irodatechnika, jelenlétérzékelés, standby-killer), LED-ek alkalmazásával. Áramellátás: a szomszédos raktárépület tetején elhelyezett 2300 m2 PV-elemmel és 4 szélkerékkel termeljük. Pillanatnyi maximumteljesítmény: 460 kW PV-felület teljesítménye Korax elemekkel 63-82%, szélkerékkel együtt 100 % Sony elemekkel 84-111 %, szélkerékkel 110-148 % Megtérülés támogatás nélkül, jelenlegi energiaárakkal bekerülés 460 mFt, megtérülés pályázati támogatással < 15 év, anélkül cca. 30 év 2012-es árakkal a megtérülés cca. 10 év

Drezda 2010 új passzív iskola 80 kW hőigény, ezt nappal a gyerekek fedezik 20 kW talajvízkutas hőszivattyú a tetőn elhelyezendő napelemekkel továbbfejleszthető autonómmá

Autonóm Város – panelból és gangos házból Fenntarthatósági vizsgálat Budapest két mintaterületén 2004 Egy fenntartható rehabilitáció során elérhető a 80 % energia-megtakarítás, 50% vízfogyasztás-csökkenés és a zöldfelületek megnövelése 0%-ról akár 70%-ra visszabontás, független terasz, energetikai felújítás (Drezda) Belvárosi tömb, tömbbelső bontás, energetikai felújítás 2011 november 25, Francia Intézet 29

Belváros

Panel 2004 Kőbánya, pontházak,energetikai felújítás Zöldfelületek növelése Lepényépület építése: szolgáltatások, üzletek, szociális intézmények, parkolók, zöldtető parkkal Panel 2004

Újpalota 2011, panelfelújítás, tervező: Ertsey A. passzívházzá alakítás, cca. 90% fűtési energia megtakarítás hőszivattyúra való átállás lehetősége, leválás a távhőről napelemfelületekkel a fűtés energiaigénye 100 %-ban megtermelhető megtérülés: 5 év!

Az épület energetikai méretezése. a passzívházak tervezésére Az épület energetikai méretezése a passzívházak tervezésére fejlesztett PHPP számítással készült az 1967-74 között alkalmazott paneltechnológiáról rendelkezésre álló adatok alapján. Kiinduló állapot 258 kWh / m2a 100 % I. ütem, homlokzatfelújítás 49 kWh / m2a - 80 % 16 cm ásványgyapot hőszigetelés 3 rtg. passzívház-ablakok Ideiglenes szellőzés (hőviszanyerés nélkül) csak hőszigeteléssel 84 kWh/m2a mért megtakarítás ~ 60 % II. ütem, gépészeti felújítás- hővisszanyerős szellőzéssel, a lepényépület megvalósulását feltételezve 17 kWh / m2a - 93 % ami eléri az épület korszerűsítésekre meghatározott 25 kWh/m2a küszöbértéket és kielégíti a A+ szintet.

Megbízó: XV. ker. Önkormányzat – RUP 15 kft. Zsókavár u. 2-4-6. KMOP-5.1.1/C-2f-2009-0001 Megbízó: XV. ker. Önkormányzat – RUP 15 kft. László Tamás polgármester, Novák Ágnes alpolgármester, Imre Ildikó projektmenedzser Építész tervező: Ertsey Attila, KÖR Építész Stúdió Gépész tervező: Kucsera Mihály, DOMTEC kft. Statikus: Zámbó Ernő, Statikus Mérnöki Iroda kft. Kivitelező: Confector Mérnök Iroda Kft.

III. ütem, PV felület + hőszivattyú - egyedi elektromos légfűtő egység lakásonként - talajszondás hőszivattyú létesítése, leválás a távhőről - a PV teljesítménye 18 0C alapfűtést ingyen teljesít - 18 0C feletti hőmérséklet egyedi elszámolással - a HMV-ért fizetni kell - megtérülés ESCO finanszírozással 5 év, a fűtésszámla továbbfizetésével Konklúzió - megközelíthető a „Nearly Zero” épület - az épület energianyerő felületei nem elegendőek az önellátásra - újépítés esetén elérhető az önellátás - kis beavatkozás – kis eredmény, a továbbfejlesztés lehetősége csökken

2011 április

Válságjelenségek A város, mint parazita - funkcionális zónák szerinti várostervezés, (le Corbusier) - logisztikai fejlődés - centralizáció, tőkekoncentráció, kiszolgáltatottság - a „Városi levegő szabaddá tesz” elve visszájára fordul Szuburbanizáció Urbanizálódó falu - centralizált ellátórendszerek - utazási kényszer nem fenntartható életmód Kőolajháború 37

Pruitt-Igoe 1971

Phoenix városa: az agglomerációt is figyelembe véve a laksűrűség az 1950-es 2431 fő/nkm-ről 1990-re 904-re csökkent A következő 40 év várható lakónépesség-növekedése 6800 nkm mezőgazdasági terület megszűnését jelentheti (ezáltal a beépített terület az 1950-es 44 nkm-ről és az 1990-es 1087 nkm-ről 7000 nkm fölé növekedhet). Támogatási rendszer (jelzálog hitel, autópálya, benzinár, ingatlanadó, állami támogatás városon kívüli infrastruktúrára) 39

40

Urbanisztikai katasztrófa Hagyományos, középkori eredetű gazdaság Ipari forradalom Modern nagyváros születése, XIX. sz. XX. sz. a termelés koncentrációja, a város kettészakadása: centrum és periféria A város lakhatatlan, kiürül Informatikai forradalom Modern vidéki élet: Földművelés Mikroipar, hálózatos termelés Fenntartható környezetterhelés Megújulók használata Élhető élet Centralizáció Urbanisztikai katasztrófa Decentralizáció Fenntartható kistérség - Vidékstratégia 2012

Passzívházak - autonóm házak Le Corbusier centralizált városutópiája 1922-ből: ötmilliós nagyvárosok zónásítás tömegközlekedés 40 m2-es lakáscellák 20 emeletes lakótornyok F. L. Wright decentralizált városmodellje 1930-ból: ötezer fős kertvárosok városon belül csak gyalogos közlekedés 4000 m2-es lakótelkek munkahely + lakhatás egy helyen Passzívházak - autonóm házak

Autonóm Kistérség > 500 % megújuló energiapotenciál felesleg! Holcim Roadshow 2010 Független Ökológiai Központ 1999, Ertsey A., Medgyasszay P.

Fenntarthatósági vizsgálat Lehatárolás a vizsgálandó terület ökológiai lehatárolása - a „fenntarthatóság szigete” (Island of Sustainability); a mintaterületen belül vizsgálandó a fenntarthatóság állapota, a területet körülvevő tágabb környezettel való kölcsönhatások. Vizsgálat és részvétel „helyi részvételi folyamat” a Local Agenda 21 szerint: 1. lépés: nyers elemzés, 2. lépés: közös jövőkép, illetve identitás megragadása, 3. lépés: részletes elemzés, 4. lépés: az első lépések (első projektötletek) meghatározása, 5. lépés: a megvalósítás programjának meghatározása, 6. lépés: projektmenedzselő szervezet felállítása a folyamat folytatására és gondozására. 44

Autonóm kistérség Nyers elemzés: - saját képességek, adottságok, potenciálok vizsgálata: földhasználat, energiapotenciál, vízbázis, zöldterület, kulturális és gazdasági képességek Input - Output vizsgálat I. 45

Autonóm Kistérség 2. Jövőkép-készítés Forgatókönyvek Energiaönállóság Vízháztartás egyensúlya Decentralizált ipari termelés lehetősége Fenntartható mezőgazdaság Élelmiszer-önrendelkezés Decentralizált kereskedelem : helyi piac, Közösségi Támogatású Mezőgazdaság (C.S.A.) Fenntartható, kőolajmentes szállítás, közlekedés Város és városellátó övezet kooperációja 3. Részletes elemzés Energiapotenciál felmérése, stb. 4. Projekt-ötletek - modellek Autonóm Kistérség 46

Vizsgálat, állapotfelvétel Alpokalja Kistérség példája Tájhasználat művelésmódok védett területek javasolt területhasználatok Teljes termőterület: 23.622 ha Korlátozásokkal nem érintett termőterület: 10.665 ha Fenntartható kistérség - Vidékstratégia 2012

Fenntartható kistérség - Vidékstratégia 2012 Energiaellátás Forrásoldal és fogyasztói oldal felmérése és összevetése Potenciálfelmérés (forrásoldal) - napenergia: jól tájolt háztetők felülete, napsütéses órák száma (térkép) - szélenergia: magasság, szélsebesség szerint, térkép, ill. mérés alapján - biomassza-mennyiség: a jövőkép tájhasználata szerinti mennyiségek meghatározása, az alábbi összetevőkkel: - szilárd: tűzifa (erdő, energiaerdő); mezőgazdasági hulladék (szalma, stb.); ipari hulladék; szelektált szemét - folyékony: hígtrágya, növényi olaj (repce, stb.), ipari szennyvíz (vágóhíd, stb.) - vízienergia: vízhozam, esésviszonyok, duzzasztás - geotermikus energia Hatékonyságnövelés (fogyasztói oldal) - energiatakarékosság: hőszigetelés, takarékos fogyasztók alkalmazása - hőszivattyú alkalmazása: földhő, levegő, nap, víz, hulladékhő - kapcsolt energiatermelés: CHP, blokkfűtőmű, ko- és trigeneráció Tényleges fogyasztás: hatékonysággal csökkentett fogyasztási igény Fenntartható kistérség - Vidékstratégia 2012

Felhasználás energiafajták szerint Napenergia: használati melegvíztermelés (HMV); fűtés: Biosolar (fafűtés + napkollektor); áramtermelés: napelem (photovoltaikus cellák); terményszárítás Szélenergia: áramtermelés (szélgenerátorok); vízemelés (szélkerekek) Vízienergia: áramtermelés (turbinák, lapátos kerekek); egyéb: pl. malom, fűrészmalom Biomassza: hőenergia-termelés (kazánok, faapríték-fűtés, stb.) áramtermelés (kétfázisú égetőmű + gázmotor) talajerő-utánpótlás üzemanyag, biodízel (ARD; RME) Geotermikus: fűtés, HMV (hőcserélő, hőszivattyú); áramtermelés: turbina Energiamodellek - Hagyományos energiaellátás modellje - Megújuló energiaellátás modellje - Kombinált energiaellátás modellje - Központi energiaellátás modellje - Nem központi energiaellátás modellje - Napenergia: egyedi HMV-ellátás; közösségi Biosolar távhőellátás - Szélenergia: szélgenerátor méretezés pl.: 1 db generátor 300/86 kW (csúcs/átl.); 1 háztartás: ~ 1500 kWh/év; 1 generátor ellát ~ 520 háztartást - Meglévő távhőmű átalakítása Biosolar fűtőművé Értékelés, megtérülés Mit érdemes használni? Fenntartható kistérség - Vidékstratégia 2012

Összes energiaigény(hő+áram): 153,3 GWh Alpokalja Kistérség példája Összes energiaigény(hő+áram): 153,3 GWh Fenntartható kistérség - Vidékstratégia 2012

Energiaigény területben Alpokalja Kistérség példája Hő+áram biomasszából, új ültetvényről: 6093 ha. Ez a korlátozás nélküli terület 57%-a, a teljes termőterület 26 %-a Hő+áram biomasszából, meglévő + új ültetvény: 2924 ha. Ez a korlátozás nélküli terület 27 %-a, a teljes termőterület 12 %-a. Hő biomasszából, meglévő + új ültetvény, áram szél-, víz-, napenergiából termelve: 1096 ha Ez a korlátozás nélküli terület 10,2 %-a, a teljes termőterület 5 %-a. A hőigény kiváltása napenergiával: 170 ha. HMV-re 4%; fűtésre 26%, összesen 30 %. Ez a korl.n.ter. 1,5 %-a, a teljes termőterület 0,7 %-a . A hőigény csökkentése energiatakarékossággal: 0 ha. Feleslegpotenciál: 42 GWh, exportálható. A teljes termőterület – a meglévő erdők kivételével – élelmiszer-termelésre használható. Az áramigény csökkentése energiatakarékossággal. A fogyasztás cca. 60-80 %-kal, 19,5-ről cca. 7,5 GWh-ra csökkenthető. A feleslegpotenciál exportálható Fenntartható kistérség - Vidékstratégia 2012

Energiaigény: Hő: 142,17; Áram: 19,55 Tájpotenciál Alpokalja Kistérség példája Energiaigény: Hő: 142,17; Áram: 19,55 Összes 153,3 GWh/év Energiahatékonyság: > 64 GWh/év Biomassza:115,5 GWh/év, tartalék: 319.9 GWh/év Szélenergia: > 40 GWh/év Vízienergia: > 1 GWh/év Geotermia: > 150 GWh/év Nap (hő): > 42 GWh/év Nap (áram): > 20 GWh/év Összes potenciál: > 752 GWh (500 %) Fenntartható kistérség - Vidékstratégia 2012

Fenntartható kistérség - Vidékstratégia 2012 Energiahatékonyság Hő: épületek 400 kWh/m2a-ról 220-ra, 45%, 64 GWh/év (Közel Nulla energiás épületek 2020-tól: > 60 kWh/m2év) Elektromosság: 60-80%, 12GWh/év Hőszivattyú: zöldárammal akár 100 % Fenntartható kistérség - Vidékstratégia 2012

115,5 GWh/év, tartalék: 319.9 GWh/év, Biomassza 115,5 GWh/év, tartalék: 319.9 GWh/év, Fenntartható kistérség - Vidékstratégia 2012

2008-ban Répceszemerén 8 épül, ez 200%. Szélenergia 1db 2 MW-os erőmű: 5,55 GWh/év, 2008-ban Répceszemerén 8 épül, ez 200%. Fenntartható kistérség - Vidékstratégia 2012

kiserőművekkel: max. 1 GWh/év Vízienergia kiserőművekkel: max. 1 GWh/év Fenntartható kistérség - Vidékstratégia 2012

Fenntartható kistérség - Vidékstratégia 2012 Geotermia 100% felett Fenntartható kistérség - Vidékstratégia 2012

Fenntartható kistérség - Vidékstratégia 2012 Nap (hő) 30%; 42 GWh/év, növelhető Fenntartható kistérség - Vidékstratégia 2012

Fenntartható kistérség - Vidékstratégia 2012 Nap (áram) Potenciál: 100% felett Példák: lakóházak teljes áramigénye fedezhető, irodaházak áramigényének 5-30%-a Fenntartható kistérség - Vidékstratégia 2012

Fenntartható kistérség - Vidékstratégia 2012 Energiamodellek I. Fenntartható kistérség - Vidékstratégia 2012

Fenntartható kistérség - Vidékstratégia 2012 Energiamodellek II. Fenntartható kistérség - Vidékstratégia 2012

Fenntartható kistérség - Vidékstratégia 2012 Energiamodellek III. Fenntartható kistérség - Vidékstratégia 2012

Fenntartható kistérség - Vidékstratégia 2012 Ökologikus vízgazdálkodás Ma uralkodó szemlélet: a vizek (csapadék, árvíz, szennyvíz, stb.) gyors elvezetése, műszaki megoldásokkal A víz értékének növekedése és a vízbázisok korlátozott volta új szemléletet igényel: Ökológikus vízhasználat: a teljes vízkörforgás elősegítése, vízmegfogás, kezelés utáni újrahasznosítás, visszaforgatás Ez az integrált vízgazdálkodás. Ivóvíz víztakarékosság, a vízbázis terhelhetősége ivóvíz használata csak a megfelelő célra (emberi fogyasztás, tisztálkodás, stb.) Használati víz esővízből: mechanikai szűrés után mosásra, WC-öblítésre, stb. talajvízből (vízminőség függvényében): mosás, tisztálkodás, stb. szürkevíz újrahasznosításából (higiéniai feltételek biztosításával): használt mosóvíz WC-öblítésre, öntözésre, autómosásra, Tisztított szennyvíz újrahasznosítása (egyedi és kommunális) öntözés; felszíni vízkészlet növelése: természetes v. mesterséges tó, tározó; talajvíz visszapótlás Vízrendezés Vízkárelhárítás: csapadékvíz elöntések, erózió, feliszapolódások, árvíz, belvíz, magas talajvíz Vízkárok okai (emberi tevékenységek): nem ökologikus folyamszabályozások nem ökologikus erdőművelés (tarvágás) nem ökologikus mezőgazdaság (rossz szántásirányok, intenzív legeltetés) természetes vízjárások megváltoztatása (útépítés, mélyépítés, stb.) Vízkárok elleni védekezés: ökologikus erdőművelés és mezőgazdaság vízmegfogás, szétterítés, tározás mezsgyék létesítése, erdőtelepítés csapadékvíz elvezetés, lefolyásszabályozás, vízrendezés, talajvízszint-csökkentés, árvízvédelem Ártéri gazdálkodás (fokgazdálkodás) Fenntartható kistérség - Vidékstratégia 2012

Fenntartható kistérség - Vidékstratégia 2012 Ma: tavaszi árvizek, nyári aszályok ingalengése Régen: vizekben gazdag Alföld, Európa legnagyobb halexportőre, 13.000.000 szürkemarha A sivatagi zóna felhúzódása Dél-Európa felől Fenntartható kistérség - Vidékstratégia 2012

Fenntartható kistérség - Vidékstratégia 2012

Fenntartható kistérség - Vidékstratégia 2012

Fenntartható kistérség - Vidékstratégia 2012

Fenntartható kistérség - Vidékstratégia 2012

Fenntartható kistérség - Vidékstratégia 2012 Szennyvízkezelés Fenntartható kistérség - Vidékstratégia 2012

Település és táj összefüggései Falu és táj, autonóm kistérségek - a fenntartható, organikus tájhasználat által a vidéki-falusi településforma fenntarthatóvá tehető és felesleg-potenciált biztosít a város számára. Átmeneti területek - kertváros, kisváros, urbánus falu - fenntarthatóvá tehetőek, a szuburbanizációt fékezik: decentralizált, fenntartható településfejlesztéssel Nagyváros - nem tehető fenntarthatóvá és autonómmá, de javítható fenntartható rehabilitáció + városellátó övezet kialakítása, barnamezős fejlesztések révén Tudatossá kell tenni a település és a táj összefüggését. 70

Stratégia – Falu, kistérség Földtulajdon védelme, közbirtokosság helyreállítása Fenntartható tájhasználat és gazdálkodás, erdőművelés Közművek, vízbázisok közösségi tulajdonba vétele Az energia-önellátás lépései: energiahatékonysági program, autonóm, alacsonyenergiás házak helyi energiatermelés (hő, elektromosság, közlekedés) törvénymódosítás: helyi fogyasztói közösség, 50 kW küszöb eltörlése, Vízgazdálkodás: víztakarékosság, esővízgyűjtés, szürkevíz-visszaforgatás szennyvíz helyben tisztítása és visszaforgatása növényi tisztítókkal, erdősítés, ártéri gazdálkodás Élelmiszer-önrendelkezés Helyi piac, közvetlen kereskedelem, helyi pénz Ercsi-Martonvásár kistérségi stratégia 2011-től

„Magyarország jövője a vidéken fog eldőlni „Magyarország jövője a vidéken fog eldőlni. A jövő két pillérre támaszkodik, a mezőgazdasági termelésre és a megújuló energiára.” Mellár Tamás Ma az élelmiszer közel 40 %-át, az energia cca. 80 %-át importáljuk. 2020-ra elérhető, hogy az élelmiszerexport > 100 % (élelmiszer-önrendelkezés), és akár 200 %-ig növelhető 2040-re elérhető, hogy az energiaimport 0 % (energiaönállóság), és akár 200 %-ig növelhető. Meg tudjuk csinálni?

…csak rajtunk múlik www.fenntarthato.hu www.autonomhaz.eu ertsey.attila@freemail.hu 2011 április