Gazdaságstatisztika konzultáció

Slides:



Advertisements
Hasonló előadás
Hipotézisvizsgálat az adatforrás működési “mechanizmusát” egy véletlen eloszlás jellemzi az adatok ismeretében megfogalmazódnak bizonyos hipotézisek erre.
Advertisements

Gyakorlati probléma 20 különböző gyógyszert próbálunk ki, t-próbával összehasonlítva a kezelt és a kontrol csoportot A nullhipotézis elfogadásáról vagy.
Hipotézis-ellenőrzés (Statisztikai próbák)
4. Két összetartozó minta összehasonlítása
I. előadás.
II. előadás.
Ozsváth Károly TF Kommunikációs-Informatikai és Oktatástechnológiai Tanszék.
3. Két független minta összehasonlítása
Rangszám statisztikák
Feladat Egy új kísérleti készítmény hatását szeretnék vizsgálni egereken. 5 féle dózist adnak be 5 vizsgált egérnek, de nem sikerült mindegyik egérnek.
Mérési pontosság (hőmérő)
Becsléselméleti ismétlés
Környezeti statisztika Dr. Huzsvai László egyetemi docens Debrecen2008.
STATISZTIKA II. 5. Előadás Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék.
Statisztika II. IX. Dr. Szalka Éva, Ph.D..
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Mintavétel Mintavétel célja: következtetést levonni a –sokaságra vonatkozóan Mintavétel.
Statisztika II. IV. Dr. Szalka Éva, Ph.D..
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Statisztika II. II. Dr. Szalka Éva, Ph.D..
Statisztika II. V. Dr. Szalka Éva, Ph.D..
Varianciaanalízis 12. gyakorlat.
Statisztika II. VIII. Dr. Szalka Éva, Ph.D..
Kvantitatív módszerek 8. Hipotézisvizsgálatok I. Nemparaméteres próbák Dr. Kövesi János.
A statisztikai próba 1. A munka-hipotézisek (Ha) nem igazolhatók közvetlen úton Ellenhipotézis, null hipotézis felállítása (H0): μ1= μ2, vagy μ1- μ2=0.
Egytényezős variancia-analízis
STATISZTIKA II. 6. Előadás Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék.
Kvantitatív Módszerek
Kvantitatív módszerek
7. Csoportok és változók sztochasztikus összehasonlítása (összehasonlítások ordinális függő változók esetén)
Gazdaságstatisztika 19. előadás Hipotézisvizsgálatok
Gazdaságstatisztika Hipotézisvizsgálatok Nemparaméteres próbák II. 17. előadás.
Gazdaságstatisztika 18. előadás Hipotézisvizsgálatok
Gazdaságstatisztika 22. előadás
RÉSZEKRE BONTOTT SOKASÁG VIZSGÁLATA
Gazdaságstatisztika 16. előadás Hipotézisvizsgálatok Alapfogalamak
Gazdaságstatisztika 15. előadás.
Hipotézis vizsgálat (2)
Hipotézis-ellenőrzés (Folytatás)
Alapsokaság (populáció)
Várhatóértékre vonatkozó próbák
Hipotézis vizsgálat.
t A kétoldalú statisztikai próba alapfogalmai
Hipotézisvizsgálat v az adatforrás működési “mechanizmusát” egy véletlen eloszlás jellemzi v az adatok ismeretében megfogalmazódnak bizonyos hipotézisek.
Paleobiológiai módszerek és modellek 4. hét
I. előadás.
A szóráselemzés gondolatmenete
Kvantitatív módszerek Hipotézisvizsgálatok Paraméteres próbák.
Gazdaságstatisztika Hipotézisvizsgálatok Paraméteres próbák november 19., november 20., november 26.
Kvantitatív módszerek
Konzultáció november 19. Nemparaméteres próbák, egymintás próbák
Paraméteres próbák- gyakorlat
Hipotézisvizsgálatok Paraméteres próbák
Hipotézisvizsgálatok
Nemparaméteres próbák
Kiváltott agyi jelek informatikai feldolgozása 2016
Hipotézisvizsgálatok általános kérdései Nemparaméteres próbák
Részekre bontott sokaság vizsgálata, gyakorló feladatok
II. előadás.
Kvantitatív módszerek MBA és Számvitel mesterszak
Becsléselmélet - Konzultáció
Kvantitatív módszerek
Nemparaméteres próbák
I. Előadás bgk. uni-obuda
III. zárthelyi dolgozat konzultáció
Hipotézisvizsgálatok Paraméteres próbák
Sztochasztikus kapcsolatok I. Asszociáció
Nemparaméteres próbák
2. Regresszióanalízis Korreláció analízis: milyen irányú, milyen erős összefüggés van két változó között. Regresszióanalízis: kvantitatív kapcsolat meghatározása.
1.3. Hipotézisvizsgálat, statisztikai próbák
3. Varianciaanalízis (ANOVA)
Előadás másolata:

Gazdaságstatisztika konzultáció Hipotézisvizsgálatok Paraméteres próbák 2014. december 2.

A próbák osztályozása Mi a nullhipotézisük tárgya? Paraméterre és eloszlásra irányuló próbák Milyen jellegűek a sokaság eloszlásával szemben támasztott alkalmazási feltételek? A paraméteres próbák alkalmazási feltételei között szerepelnek a sokasági eloszlás típusára, egyes paramétereire vonatkozó elvárások A nemparaméteres próbák alkalmazása legfeljebb a sokaság eloszlásának folytonosságát követeli meg Hány és mekkora minta szükséges a végrehajtásukhoz? Egy, két vagy többmintás próbák Független és páros mintás próbák Kis- és nagymintás próbák (határ n=30)

Kétmintás próbák A kétmintás próbák – ideértve a speciális páros mintás próbákat is – annak a kérdésnek a vizsgálatára használhatók, hogy két meghatározott szempontból eltérő (pl. különböző műszakok, gépek stb.) sokaságban a vizsgált paraméterek (várható értékek, szórások) is különböznek-e egymástól. A kétmintás próbák két sokaság egymással való összehasonlítását szolgálják. A sokaságok időben, térben vagy bármilyen más tekintetben különbözhetnek egymástól. Kétmintás, a sokasági varianciák egyezésére irányuló próba Páros mintás, a várható értékek különbségére irányuló próba Két, független mintás, várható értékek egyezésére irányuló z-, ill. t- próba

Kétmintás próbák – a sokasági szórások összehasonlítására irányuló próba Alkalmazási feltétel: normális eloszlású, független alapsokaságok Nullhipotézis: Ellenhipotézis: H1: 12>22 A próbafüggvény F-eloszlású (DF1, DF2, DF1,2=n1,2 -1) Táblázataink is egyoldali próbára vonatkoznak (F, DF1, DF2 kritikus értékeit adják meg) A két alapeloszlásból vett n1 és n2 elemű minták korrigált tapasztalati szórásai torzítatlan becslései az alapsokasági szórásoknak. ahol s1*2>s2*2

Kétmintás próbák – a sokasági várható értékek összehasonlítására irányuló próbák FÜGGETLEN MINTÁK Az alkalmazási feltételek függvényében kétféle próba: kétmintás z-próba ha ismerjük az alapsokasági szórásokat (1 és 2), vagy ha nem ismerjük, de nagy mintával dolgozunk (n1,2>30 és az ismeretlen alapsokasági szórásokat a korrigált tapasztalati szórásokkal becsüljük) kétmintás t-próba ha nem ismerjük az alapsokasági szórásokat, és kis mintáink vannak Nullhipotézis: H0: 1=2 (vagyis a két sokasági várható érték egyenlő) Lehetséges ellenhipotézisek: H1: 1 ≠ μ2 H1: 1 > μ2 H1: 1 < μ2

Kétmintás próbák – a sokasági várható értékek összehasonlítására irányuló próbák Kétmintás z-próba Alkalmazás feltétele: normális eloszlású alapsokaságok, ismert alapsokasági varianciák Nullhipotézis: H0: 1=2 Lehetséges ellenhipotézisek és elfogadási tartományok: A próbafüggvény N(0,1) eloszlású: H1: 1 ≠ 2 -z/2 <zsz<z/2 H1: 1 > 2 zsz<z H1: 1 < 2 zsz>-z

Kétmintás próbák – a sokasági várható értékek összehasonlítására irányuló próbák Kétmintás t-próba Alkalmazás feltétele: normális eloszlású alapsokaságok, ismeretlen alapsokasági varianciák kis minták esetén akkor kezelhető, ha az ismeretlen szórásokról tudjuk, hogy azok egyenlőek (F-PRÓBA) Nullhipotézis: H0: 1=2 Lehetséges ellenhipotézisek és elfogadási tartományok: A próbafüggvény Student eloszlású (DF=n1+n2-2): H1: 1 ≠ 2 -t/2 <tsz<t/2 H1: 1 > 2 tsz<t H1: 1 < 2 tsz>-t

Kétmintás próbák – a sokasági várható értékek összehasonlítására irányuló próbák PÁROS MINTÁK Páros mintáknál az egyik minta elemeinek kiválasztása maga után vonja a másik minta elemeinek kiválasztását. n=n1=n2 a két páros minta összetartozó elemeinek di=yi-xi különbségeit képezzük  egy n elemű minta Nullhipotézis: H0: μ1=μ2 vagy H0: μd=δ0 Ellenhipotézis: egyoldali vagy kétoldali Próbafüggvény Student eloszlást követ (DF=n-1):

Példa Egy fémipari üzemben a 300mm névleges átmérőjű tárcsákat az “A” és “B” jelű műszakokban gyártják. A két műszakban gyártott tárcsák átmérőjének hosszára vonatkozóan elvégzett mérések eredményeit az alábbi táblázat összegzi. (A gyártott tárcsák átmérőjének hossza normális eloszlású valószínűségi változónak tekinthető.) 5%-os szignifikancia szinten elfogadható-e az az állítás, hogy az “A” műszakban gyártott tárcsák átmérőjének várható értéke nagyobb, mint a “B” műszakban gyártottaké? Megoldás: a mintaelemszámok kisebbek, mint 30!  kétmintás t-próba, de ELŐTTE F-próba "A" műszak "B" műszak Minta elemszáma 11 10 Mintából számított átlag (mm) 300,1 299,6 Tapasztalati szórásnégyzet 0,8944 0,7745

Példa A megoldás menete: Hipotéziseink: Két normális eloszlású valószínűségi változó várható értékei egyenlőségét Esetünkben az elméleti szórások ismeretlenek és a minták elemszámai 30-nál nem nagyobbak, ezért a kétmintás z-próba nem alkalmazható F-próbát alkalmazunk az elméleti szórások egyenlőségének tesztelésére Ha az F-próba eredményeként feltételezhető az elméleti szórások egyenlősége, akkor kétmintás t-próbával teszteljük a várható értékek egyenlőségét Hipotéziseink: H0: az “A” műszakban gyártott tárcsák átmérőjének várható értéke egyenlő a “B” műszakban gyártott tárcsák átmérőjének várható értékével. H1: az “A” műszakban gyártott tárcsák átmérőjének várható értéke nagyobb, mint a “B” műszakban gyártottaké

Példa F-próba H0: H1: α=5% Számlálóhoz tartozó szabadságfok: 11-1=10 "A" műszak "B" műszak Minta elemszáma 11 10 Mintából számított átlag (mm) 300,1 299,6 Tapasztalati szórásnégyzet 0,8944 0,7745 F-próba H0: H1: α=5% Számlálóhoz tartozó szabadságfok: 11-1=10 Nevezőhöz tartozó szabadságfok: 10-1=9 Mivel Fsz< Fkrit, ezért a nullhipotézist 5%-os szignifikancia szinten elfogadjuk, azaz elfogadjuk az elméleti szórások egyezését, és így a várható értékek egyenlőségét kétmintás t-próbával ellenőrizhetjük.

Példa Mivel a számított érték az elfogadási tartományba esik, ezért 5%-os szignifikancia szinten elfogadjuk a nullhipotézist, azaz az “A” és “B” műszakban gyártott tárcsák átmérőjének várható értéke között nincs szignifikáns különbség. Kétmintás t-próba: α=5% DF=11+10-2=19 egyoldali próba,

Példa Egy palackozó üzemben az 1-es és 2-es gyártósorokon palackozott 1 liter névleges űrtartalmú üdítőitalok töltési térfogatát vizsgálták. Egy-egy mintát vettek a két soron palackozott üdítőitalokból, s a mintákból meghatározták a töltési térfogatok átlagát és tapasztalati szórásnégyzetét. Az eredményeket az alábbi táblázatban rögzítették. (A töltési térfogat normális eloszlású valószínűségi változónak tekinthető.) a.) 5%-os szignifikancia szinten elfogadható-e az az állítás, hogy az 1-es gyártósoron palackozott üdítőitalok töltési térfogatának várható értéke nagyobb, mint a 2-es gyártósoron palackozottaké? b.) 5%-os szignifikancia szinten elfogadható-e az az állítás, hogy az 1-es gyártósoron palackozott üdítőitalok töltési térfogatának szórása kisebb, mint a 2-es gyártósoron palackozottaké? 1-es gyártósor 2-es gyártósor Minta elemszáma 61 Mintából számított átlag 1,02 0,98 Tapasztalati szórásnégyzet 0,045 0,05

Példa A megoldás menete: Hipotézisek (a. kérdés): Két normális eloszlású valószínűségi változó várható értékei egyenlőségét Kétmintás z-próbával tesztelhetjük, ha ismertek az elméleti szórások vagy a minták elemszáma nagyobb 30-nál Kétmintás t-próbával tesztelhetjük, ha az elméleti szórások ismeretlenek, de azok egyenlősége feltételezhető Esetünkben az elméleti szórások ismeretlenek és a minták elemszámai 30-nál nagyobbak, ezért a kétmintás z-próba alkalmazható A kétmintás t-próba szintén alkalmazható, ha az elméleti szórások egyenlősége feltételezhető. Ez utóbbi feltételezést F-próbával tesztelhetjük. Hipotézisek (a. kérdés): H0: az 1-es gyártósoron palackozott üdítőitalok töltési térfogatának várható értéke egyenlő a 2-es gyártósóron palackozott üdítőitalok töltési térfogatának várható értékével H1: az 1-es gyártósoron palackozott üdítőitalok töltési térfogatának várható értéke nagyobb, mint a 2-es gyártósoron palackozottaké

Példa A töltési térfogat normális eloszlású valószínűségi változó, ezért a feladatunk két normális eloszlású valószínűségi változó várható értékei egyenlőségének tesztelése. A próbastatisztika értéke az elfogadási tartományba esik, ezért a két gyártósoron palackozott üdítőitalok várható töltési térfogatát 5%-os szignifikancia szinten egyenlőnek tekinthetjük. Nem fogadható el az az állítás, hogy az 1-es gyártósoron palackozott üdítőitalok töltési térfogatának várható értéke nagyobb, mint a 2-es gyártósoron palackozottaké.

Példa Másik lehetséges megoldás: kétmintás t-próba 1-es gyártósor 2-es gyártósor Minta elemszáma 61 Mintából számított átlag 1,02 0,98 Tapasztalati szórásnégyzet 0,045 0,05 Mivel a számított érték kisebb, mint a kritikus érték, a nullhipotézis 5%-os szignifikancia szinten elfogadható, így ezen a szignifikancia szinten elfogadható a szórások egyenlősége, s nem fogadható el az az állítás, miszerint az 1-es gyártósoron palackozott üdítőitalok szórása kisebb, mint a 2-es soron palackozottaké. Mivel 5%-os szignifikancia szinten a szórások egyenlősége elfogadható, így az a.) feladat kétmintás t-próbával is megoldható. Másik lehetséges megoldás: kétmintás t-próba Ezt megelőzi az F-próba!!!!! F-próba hipotézisei (b. kérdés): H0: az 1-es gyártósoron palackozott üdítőitalok töltési térfogatának szórása egyenlő a 2-es gyártósoron palackozott üdítőitalok töltési térfogatának szórásával H1: az 1-es gyártósoron palackozott üdítőitalok töltési térfogatának szórása kisebb, mint a 2-es gyártósoron palackozottaké Számláló DF: Nevező DF:

Példa Kétmintás t-próba (a. kérdés): DF= 61+61-2=120 A próbastatisztika értéke az elfogadási tartományba esik, ezért a két gyártósoron palackozott üdítőitalok várható töltési térfogatát 5%-os szignifikancia szinten egyenlőnek tekinthetjük. Nem fogadható el az az állítás, hogy az 1-es gyártósoron palackozott üdítőitalok töltési térfogatának várható értéke nagyobb, mint a 2-es gyártósoron palackozottaké.

Példa Megjegyzés: A kétmintás z-próbánál, valamint a kétmintás t-próbánál a próbastatisztikák és az elfogadási tartományok: A kapott értékek jól érzékeltetik, hogy a két próba végrehajtása a gyakorlat szempontjából azonos eredményt hoz.

Példa – Feladatgyűjtemény (33.) Egy fővárosi kerületben a 2000 májusában házasságot kötő párok közül véletlenszerűen kiválasztottak 12 párt, és a párok mindkét tagját külön-külön megkérdezték, hogy hány gyermeket terveznek. Az eredmények a következők (a tervezett gyermekek száma a 12 házaspárnál): Vizsgáljuk meg, hogy 5%-os szignifikancia szinten van-e különbség a feleség és a férj által tervezett gyerekszám között! Megoldás: kétmintás páros próba Házaspár sorszáma 1 2 3 4 5 6 7 8 9 10 11 12 Feleség Férj

Példa – Feladatgyűjtemény (33.) H0-t elfogadjuk 95%-os megbízhatósági szinten, azaz nincs különbség a férj és a feleség által vállalni kívánt gyerekszám között. Hipotézisek: H0: μférj=μfeleség (μd=0) H1: μférj<μfeleség (μd>0) DF=11 α=5% tkrit=1,796 Házaspár sorszáma 1 2 3 4 5 6 7 8 9 10 11 12 Feleség Férj di -1

Többmintás próbák A többmintás próbák annak a kérdésnek a vizsgálatára használhatók, hogy több – meghatározott szempontból eltérő (pl. különböző műszakok, gépek stb.) – sokaságban a vizsgált paraméterek (várható értékek, szórások) is különböznek-e egymástól. A többmintás próbák kettőnél több sokaság egymással való összehasonlítására szolgálnak. Több sokasági szórás (variancia) összehasonlítása Több sokaság várható értékének összehasonlítása (varianciaanalízis)

Többmintás próbák – több sokasági szórás összehasonlítása Cochran próba: azt dönthetjük el, hogy a szórások között talált legnagyobb érték tekinthető-e a többivel azonos eloszlásból származónak. Alkalmazási feltétel: normális eloszlású alapsokaságok, azonos n elemszámú minták (r db sokaságból r db mintánk van) Nullhipotézis: Ellenhipotézis: H1: nem minden variancia egyenlő A próbafüggvény: DF=n-1 Elfogadási tartomány: gsz < gkrit

Több sokaság várható értékének összehasonlítása - varianciaanalízis Alkalmazási feltétel: független minta, normális eloszlású alapsokaságok, a sokasági szórások egyezése feltételezhető (lásd Cochran próba) Nullhipotézis: a nullhipotézis fennállása azt jelenti, hogy nincs kapcsolat az X mennyiségi ismérv és a sokaságokat megkülönböztető minőségi ismérv között a próba a vegyes kapcsolat tesztelésének is tekinthető, a nullhipotézis elfogadása esetén a minőségi ismérv nem befolyásolja a mennyiségi ismérv alakulását, a két ismérv független egymástól Ellenhipotézis: H1: bármely két várható érték nem egyenlő egymással H1 fennállása azt jelenti, hogy van kapcsolat az adott két ismérv között A szórásnégyzet-felbontás módszerére épül (lásd heterogén sokaság vizsgálata)

Több sokaság várható értékének összehasonlítása - varianciaanalízis Menete: Főátlag számítása: Teljes négyzetösszeg: Csoportok közötti négyzetösszeg: a csoportok közti eltéréseket magyarázza, méri Csoportokon belüli négyzetösszeg: a csoportokon belüli eltéréseket, a véletlen hatásokat mutatja

Több sokaság várható értékének összehasonlítása - varianciaanalízis SST = SSK + SSB SSK: a csoportosítás hatása a szóródásra Varianciahányados: H2=SSK/SST SSB: a szóródás azon része, amelyet a csoportosítás nem magyaráz a csoportosító ismérven kívül egyéb tényezők magyaráznak A varianciaanalízis éppen arra keresi a választ, hogy a csoportosító ismérvnek köszönhető eltérésnégyzet-összeg (SSK) szignifikáns nagyságrendű-e.

Több sokaság várható értékének összehasonlítása - varianciaanalízis Ha H0 igaz: a csoporton belüli négyzetösszeg (SSB) 2-eloszlású n-r szabadságfokkal a csoportok közötti négyzetösszeg (SSK) 2-eloszlású r-1 szabadságfokkal a négyzetösszegek és a megfelelő szabadságfokok hányadosából képzett ún. külső (sk2), ill. belső (sb2) szórásnégyzetek egymástól függetlenek a közös várható értékük az ismeretlen, de egyenlő alapsokasági szórás: M(sk2)=M(sb2)=. A két szórás egyezésének vizsgálatával így ellenőrizhetjük eredeti hipotézisünket: a várható értékek azonosságát A próbastatisztika (r-1, n-r) paraméterű F-eloszlású:

Több sokaság várható értékének összehasonlítása - varianciaanalízis ANOVA tábla Négyzetösszeg neve Négyzetösszegek Szabadságfok Szórás becslése F érték p-érték Csoportok közötti * r-1 sk2 sk2/sb2 p Csoporton belüli ** n-r sb2 - Teljes n-1

Példa – Feladatgyűjtemény (37.) Egy betongyárban 4 cementgyárból (A, B, C, D) vásárolnak cementet. A cement minőségét próbakockák gyártásával ellenőrzik. A beérkező „500-as cement” szállítmányokból mintát véve a próbakockák nyomószilárdság adatai [kg/cm2-ben] az alábbiak A szállító: 512, 716, 668, 726, 580 B szállító: 516, 664, 614, 586, 590 C szállító: 542, 684, 722, 600, 642 D szállító: 566, 744, 546, 610, 672. Van-e különbség a szállítók között? (Vagyis van-e különbség a különböző cementgyártók által beszállított cement(kockák) nyomószilárdságának várható értékei között?) Varianciaanalízis, előtte Cochran próba!

Példa – Feladatgyűjtemény (37.) A sokasági varianciák egyezőségének vizsgálata – Cochran próba Hipotézisek: H0: A=B=D=C H1: a legnagyobb szórású különbözik Beszállító Minta Mintaátlag Korr. tap. szórás A 512, 716, 668, 726, 580 B 516, 664, 614, 586, 590 C 542, 684, 722, 600, 642 D 566, 744, 546, 610, 672 640,4 92,113 594 53,5 638 70,44 627,6 81,06

Példa – Feladatgyűjtemény (37.) Cochran próba Számított érték meghatározása Kritikus érték: α=5% n=5 DF=4 r=4 gkrit=0,63 Döntés: mivel a számított érték kisebb, mint a kritikus érték, így a nullhipotézist elfogadjuk, 5%-os szignifikancia szint mellett a sokasági szórások megegyeznek. Beszállító Minta Mintaátlag Korr. tap. szórás A 512, 716, 668, 726, 580 B 516, 664, 614, 586, 590 C 542, 684, 722, 600, 642 D 566, 744, 546, 610, 672 640,4 92,113 594 53,5 638 70,44 81,06 627,6

Példa – Feladatgyűjtemény (37.) Varianciaanalízis Hipotézisek: H0: A=B=C=D H1: bármelyik kettő nem egyenlő Beszállító Minta Mintaátlag Korr. tap. szórás A 512, 716, 668, 726, 580 B 516, 664, 614, 586, 590 C 542, 684, 722, 600, 642 D 566, 744, 546, 610, 672 640,4 92,113 594 53,5 638 70,44 627,6 81,06

Példa – Feladatgyűjtemény (37.) Varianciaanalízis Beszállító Minta Mintaátlag Korr. tap. szórás A 512, 716, 668, 726, 580 B 516, 664, 614, 586, 590 C 542, 684, 722, 600, 642 D 566, 744, 546, 610, 672 640,4 92,113 594 53,5 638 70,44 627,6 81,06

Példa – Feladatgyűjtemény (37.) Mivel Fsz=0,4<Fkrit=3,24  H0-t elfogadjuk 95%-os megbízhatósági szinten, azaz a beszállítóktól származó próbakockák minősége (nyomószilárdsági adatai) között nincs különbség. ANOVA tábla   Négyzet-összegek Szabadságfok Szórás becslése F érték Csoportok közötti Csoporton belüli - Teljes 6872,25 r-1=4-1=3 2290,75 0,4 91518,32 N-r=20-4=16 5719,9 98390,57 N-1=19 =0,05 DF1 =3 DF2 = 16 A kritikus érték: Fkr=3,24

Összefoglalás A zárthelyin számonkérésére kerülő próbák: Nemparaméteres próbák: Illeszkedésvizsgálat Homogenitásvizsgálat Függetlenségvizsgálat Paraméteres próbák: Egymintás Sokasági szórásra irányuló próba Várható értékre irányuló próbák (egymintás z- vagy t-próba) Kétmintás Sokasági szórásokra irányuló próba (F-próba) Várható értékekre irányuló próba (kétmintás z-, vagy t-próba, páros mintás próba) Többmintás Sokasági szórásokra (Cochran-próba) Várható értékekre irányuló próba (varianciaanalízis)