Immunrendszer sejtjeinek jellemzése (azonosítása) és elválasztása Áramlási citometria, FACS Az antigén–ellenanyag kapcsolódáson alapuló preparatív és analitikai módszerek elméleti háttere és az immunológiailag kompetens sejtek funkcionális vizsgálata 1.
Az immunoesszék érzékenysége
Az immunrendszer sok sejttípusa (pl. a különféle limfociták) morfológiailag nem megkülönböztethetők egymástól
HUMÁN LIMFOCITAPOPULÁCIÓK FONTOSABB SEJTFELSZÍNI STRUKTÚRÁI („antigénjei”)
A sejteken jelenlevő receptorok ligandumait fel lehetne használni mint jelölő anyag. De ezek sok esetben önmagukban csak kis affinitású kölcsönhatások (sok receptor multimerizációt igényel nagy aviditású kölcsönhatás kialakításához) Sejtfelszíni molekulákat, receptorokat felismerő ellenanyagok viszonylag egyszerűen előállíthatók Az ellenanyagok affinitása/aviditása kellően erős lehet a stabil jelöléshez CD40 CD40L CD40 CD40L CD40 anti-CD40
Ahhoz, hogy a jelölés valóban érzékelhető legyen, a jelölő anyagnak kell érzékelhetőnek lennie Lehetőségek: izotóp enzim (pl. enzimaktivitás segítségével katalizált színreakció) fluoreszcencia nemesfém mikrogyöngyök (elektronmikroszkópia - „immungold”) …
A fehérjék aminosav oldalláncaira megfelelően aktivált (fukciós csoporttal ellátott) anyagok egyszerűen kovalensen ráköthetők: pl. aminocsoporthoz (pl. lizin oldallánc): izotiocianát csoporttal szukcinimidil észter (SE) csoporttal:
A fehérjék aminosav oldalláncaira megfelelően aktivált (fukciós csoporttal ellátott) anyagok egyszerűen kovalensen ráköthetők: pl. tiolokhoz (pl. cisztein oldallánc): halogénezett szerves vegyületekkel malemid csoporttal:
Az immunrendszer sejtjeinek jellemzése sejtfelszíni antigének*/markerek alapján A sejtfelszíni markerek alapján jellemezhető a sejtek funkcionális állapota is (nyugvó/aktivált) és diagnosztikus értéke is lehet a sejttípusok jellemző százalékos arányának megváltozása, rendellenes sejtfelszíni markerek megjelenése, egyes markerek mennyiségének megváltozása, eltűnése esetén. Példák: „Aktiválási markerek” megjelenése (CD69 (limfociták), CD83 (DC)) haematológia neoplasticus folyamatok diagnosztikája, csontvelői érési zavarok HIV progresszió/AIDS manifesztációja: CD4+ helper T sejtek számának csökkenése (CD4+ : CD8+ = 1.6, Normál CD4+ T-sejt szám = 600 – 1400/ l) AIDS = CD4+ T sejt szám <200/ l! CD5+ B sejtek felszaporodása – B sejtes leukémiák egy része (* az immuniológusok gyakran az immunválasz szemszögéből viszonyulnak különféle anyagokhoz, ezért gyakran megesik, hogy ott ahol mások a „molekula”, „receptor” vagy „fehérje” kifejezéseket használnák ott az „antigén” szót találjuk. Mivel ezeket az anyagokat gyakran ellenanyagok segítségével fedezték fel/mutatják ki, a terminus használata helyénvaló)
CD antigénsejttípusfunkcióliganduma CD3T sejtek T sejt antigén receptor jelátvivő komplexe CD4 helper T sejtek, plazmacitoid dend- ritikus sejtek (pDC), monociták T sejt antigénreceptor koreceptora, (HIV receptor) MHC-II, HIV CD5T sejtek, (B sejt alpopuláció: B1) sejt adhézió, jelátvitel (kostimuláció) CD72 CD8citotoxikus T sejtek, (NK, T sejtek) T sejt antigénreceptor koreceptora MHC I CD14Monociták, makrofágok, granulociták egy része LPS receptor része LPS, LBP CD19B sejtek B sejt Ag receptor koreceptorának egyik lánca (CD19/CR2(CD21)/CD81) C3d, C3b CD28T sejtek kostimuláció (B7-1, B7-2) CD80, CD86 CD34hematopoietikus progenitor sejt, endotélium sejt adhézió CD62L (L-szelektin) CD56NK sejtek, (T és B sejt alpopuláció) homoadhézió (N-CAM izoform) CD80, CD86 (B7-1, -2) professzionális APC: DC, B, monocita, makrofág kostimuláció, sejt adhézió CD28, CD152
Áramlási/áramlásos citometria Az immunofluoreszcens módszerek közé tartozik, a felhasználás lehetőségek jelentős része a monoklonális ellenanyag technikán alapul. Rendkívül nagy számú sejt egyedi vizsgálatára alkalmas FELHASZNÁLÁS: A klinikumban immunológiai és haematológiai diagnosztika, kis százalékban jelenlevő sejtek vizsgálata. A kutatásban széleskörű felhasználás a sejtek életképességének mérésétől a kromószamaanalízisen át a sejtelválasztásig. Folyékony közegben, nagy sebességgel áramló egyedi sejteket vizsgál A fluoreszcens festékkel jelölt sejtek által kibocsátott fény intenzitását és a sejtek fényszórását detektálja Morfológiai adatokat csak közvetetten szolgáltat (méret, granuláltsági állapot) Statisztikai jellegű módszer
Fluoreszcein FITC (fluoreszcein izotiocianát) fluoreszcein-5-izotiocianát Fluoreszcens jelzőanyagok sejtekbe juttathatók, vagy ellenanyagokhoz köthetők Sok izomer létezik, ezek spektrumai kissé eltérhetnek egymástól!
Fikoeritrin, PE (fehérje) 3Z-fikoeritrobilin (PEB), a fikoeritrin fehérje kromofór funkciós csoportja Fluoreszcens jelzőanyagok A fikoeritrin különféle algák fotoszintetikus apparátusában a klorofill ”alá dolgozó” fehérje
Kívánalmak a festékekkel szemben -minél nehezebben kioltható fluoreszcencia (fotostabilitás) -minél szűkebb gerjesztési (excitációs) és emissziós spektrum (több „szín” együttes használhatóságát megkönnyíti) Új generációs festékek →Előnyös kioltási és spektrális tulajdonságok →„egzotikus” spektrális tartományok használata: UV (Pacific Blue ® ), IR (PE- Cy7, APC-Cy7) →Tandem festékek: energiaátadás a két komponens között, nagy eltérés lehet az excitációs és emissziós spektrum között (akár extrém „Stokes- shift”-ek is, pl. PE-Cy7) BD Cy-chrome ® (PE-Cy5, CyC, PC5) PE-Cy7, PerCP-Cy5.5, APC-Cy7 →APC, AlexaFluor család, Dyomics DY-xxx, Pacific Blue TexasRed, PE- TexasRed, Quantum dot/Qdot (félvezető nanokristályok) Fluoreszcens jelzőanyagok Fluoreszcens jelzőanyagok spektrumai:
©J.Paul Robinson A citométerek fejlődése a korai sejtszámláló berendezésektől a sejtválogató „szorterekig” Early cell counter. Katherine Williams and C.S. Sanders (Atomic Energy Research Establishment) Unclassified in (Photo taken in Science Museum, London UK)
asztali áramlási citométer (BD FACSCalibur ™ ) szorter-áramlási citométer (FACS, BD FACSDiVa ™ )
a: eritrociták a lamináris folyadékáramban egyenletesen rendeződve és kissé elnyúlva haladnak a hirodinamikai erők hatására a központi áramlat mentén b: turbulens áramlásban a sejtek deformálódnak és a cső fala mentén szétszórtan, különböző sebességgel haladnak a folyadékárammal Image fromV. Kachel, et al. A lamináris áramlás lehetővé teszi a sejtek gyors vizsgálatát
Lamináris áramlásban a tinta vékony sugárba rendeződve áramlik az elvezető csövön keresztül A tinta elvezető-csőbeli elhelyezkedését alig befolyásolja az eredeti pozíciója V. Kachel, H. Fellner-Feldegg & E. Menke HIDRODINAMIKAI FÓKUSZÁLÁS Nincs keveredés a két folyadék között
A citométer hidrodinamikai rendszere Injektor Fluoreszcens szignálok Fókuszált lézer sugár vivő folyadék akár 6-10m/s sebesség minta vivő- vagy köppeny folyadék Áramlási cella
A mért paraméterek: Fényszórás (FSC, SSC) FALS Sensor FSC (forward angle light scatter vagy forward scatter) 90LS Sensor SSC (side scatter) Lézer Előre irányuló fényszórás 90 -os (oldal) fényszórás kisebb struktúrákról (organellumok, sejtfelszín) bármely részecskéről (”sejtméret”)
Lézer A mért paraméterek: Fluoreszcencia FALS Sensor FSC nagy érzékenységű fotodetektorok (fotoelektron sokszorozók – PMT photomultiplier tubes ) fluoreszcens festékek vagy autofluoreszcencia (piridinek és flavinok jelenléte miatt)
Az áramlási és az optikai rendszer elvi felépítése PMT 1 PMT 2 PMT 4 dikroikus tükrök és fényszűrők Lézer(ek) PMT 3 vizsgálandó sejtek fényérzékelők áramlási cella FSC érzékelő
B NK Th Tc A mérés elve egy példán keresztül: A CD4+ (helper) és a CD8+ (citotoxikus) T sejtek arányának Meghatározása perifériás vérben Jelölő anyagok: FITC jelzéssel ellátott anti-CD4 ellenanyag (α-CD4-FITC) PE jelzéssel ellátott anti-CD8 ellenanyag (α-CD8-PE) A perifériás vérben jelenlévő fő limfocita populációk Fluoreszcens mikroszkóppal valami ilyesmit látnánk
Fókuszált lézernyaláb Th nagy sebességű folyadékáram (küvettában, vagy szabadon) CD4 FITC CD8 PE detektor A CD4-FITC jelölt (T H ) sejt detektálása jelfeldolgozó egység Képernyő A CD4+ CD8- sejtet szimbolizáló pont növekvő fényintenzitás mikroszkóppal:
Tc detektor A CD8- PE jelölt (T c ) sejt detektálása CD8 PE CD4 FITC jelfeldolgozó egység növekvő fényintenzitás
B detektor A jelöletlenül maradt sejtek detektálása (pl.B sejtek) CD8 PE CD4 FITC jelfeldolgozó egység növekvő fényintenzitás mikroszkóppal halványnak látszó (autofluoreszcens) sejt
kvadráns statisztika CD8 PE CD4 FITC 38% 0% 44% 18%
Ábrázolásmódok 1. dot-plot contour- plot density- plot
Ábrázolásmódok 2. Hisztogramm (A homogén sejtpopuláció hisztogramja a normál eloszlásnak megfelelő haranggörbe) Az intenzitás értékek számszerűsíthetőek (MFI): ~ 7 ~ 1300
A különböző sejttípusoknak jellegzetes fényszórásuk van előre irányuló fényszórás - FSC („méret”) oldal irányú fényszórás - SSC (granuláltság, a sejtek komplexitása) granulociták monociták limfociták
Perifériás vér vizsgálata hematológiai automatával Mért paraméterek: peroxidáz festés (mieloperoxidáz jelenléte, x – tengelyen) fényszórás (nagy granulált sejteknél magas, y –tengelyen) 1 Zaj 2 Magvas vörösvérsejt 3 Összetapadt thrombociták 4 Limfociták és bazofilek 5 Nagy nemfestődő sejtek (LUC) 6 Monociták 7 Neutrofilek 8 Eozinofilek Csak a főbb sejtípusokat lehet meghatározni vele
A vérminta vörösvérsejt mentesítéséhez használt módszer befolyásolja a megmaradó sejtek százalékos összetételét az eritrociták lizálásával kapott eredmény sűrűség alapú elválasztással kapott eredmény (Ficoll) hiányzó granulociták
összes sejt granulociták monociták limfociták A ”kapuzás” segítségével az egyes populációk külön-külön jellemezhetők (gating) granulocita „kapu” monocita „kapu” limfocita „kapu”
Az előző ábrával kapcsolatban felmerülhet, hogy honnan lehet megállapítani, hogy egy adott sejt valóban specifikusan jelölődött-e vagy az autofluoreszcencia miatt látszik jelöltnek? A CD4 jelölés a limfociták esetében egyértelmű volt a helyzet, mert a + és – populáció egyszerre volt jelen, és a CD4+ limfociták könnyen elkülöníthetőek a CD4- limfocitáktól. De vannak problémás esetek is! Pl. CD1a, MHC szerű molekulát expresszáló dendritikus sejtek arányának meghatározása Honnan számítanak a sejtek pozitívnak?
? Összehasonlítás egy festetlen kontrol mintával (vagy izotípus kontrol ellenanyaggal „jelölt”) Hol húzzuk meg a határt? humán CD1a specifikus, egér IgG1 „kontrol” egér IgG1 ellenanyag (pl. DNP specifikus)
A vizsgált fluoreszcencia mellett érdemes egy másik fluoreszcenciát (akár autofluoreszcenciát) is figyelembe venni, és a kettőt együtt ábrázolni: autofloureszcencia IgG1 izotípus kontroll ellenagyag CD1a autofluoreszcencia A hisztogrammos ábrázolásmód sok esetben megtévesztő lehet A hisztogramm elfedi ezeket a sejteket Az izotípus kontroll ellenanyaggal „jelölt” minta segítségével kijelölhető a várt CD1a+ sejtek helye
A sejtek nukleinsav mennyisége kimutatható a nukleinsavakhoz sztöhio- metrikus mennyiségben kötődő festékekkel. Ilyen, a duplaszálú nuklein- savakba (DNS v. RNS) interkalálódó festék: propidium jodid ethidium bromid N+N+ C2H2)3C2H2)3 NH 2 N+N+ C2H5C2H5 CH 3 C2H5C2H5 Propidium N+N+ C2H5C2H5 NH 2 Ethidium Sejtek fenotípusa mellett a sejtek állapota/funkciója is vizsgálható A sejt anyagcseréjének intenzitását jelezheti a benne levő mitokondriumok száma - ez a mitokondriumokat specifikusan festő anyagokkal (Mitotracker festékek) kimutatható – élő/halott sejtek is elkülöníthetők vele MitoTracker Red (Nem immunológiai módszerek!)
Sejtciklus analízis DNS mennyiség meghatározása (fluoreszcens DNS interkalátorok, 3 H-timidin) - transzkripció kimutatása (RT-PCR) - fehérjék kimutatása (Immunoassay) sejtszám változás meghatározása (CFSE) a sejtciklusba lépő sejtek mérete megnövekszik = blasztos transzformáció
G2G2G2G2 M G0G0G0G0 G1G1G1G1 s G0G0G0G0 G1G1G1G1 s G2G2G2G2M DNS analízis (pl.aneuploidia diagnosztikájához) DNS mennyiség sejtszám 2N 4N A sejtciklus vizsgálható a DNS mennyiség alapján, pl. a DNS-be sztöhiometrikus módon interkalálódó fluoreszcens festékekkel (propidium jodid, PI) Egy sejtpopuláció sejtjeinek eloszlása DNS mennyiség alapján (áramlási citometriás ábra)
PI Fluorescence 2N 4N DNA Analysis szub G0/G1 sejtek A typical DNA Histogram
A sejtciklusra jellemző (intracelluláris) fehérjék megjelenésének a kimutatásával (ellenanyagokkal) további lehetőségek nyílnak a sejtciklus, és az osztódó sejtek kimutatására: Ciklinek, Ki-67, PCNA Apoptózis kimutatása: DNS mennyiség csökkenése alapján Nukleoszómák közötti DNS hasítás során keletkező DNS végek jelölése: BrDU avagy dUTP és Tdt (terminális deoxinukleotidil transzferáz) A sejtmembrán normális esetben intracelluláris oldalán levő foszfatidil szerin molekulái megjelennek az extracelluláris oldalon. Fluoreszceinnel konjugált Annexin V jelölés normál sejtciklusú sejtek szub G 0 /G 1 sejtek
Kromoszóma Analízis és szeparálás Kromoszómák is analizálhatóak és izolálhatóak áramlási citométerrel megfelelő kezelés után. Elterjedt módszer két különböző DNS festék használata: a Hoechst 33258, amely AT-gazdag régiókhoz, és a chromomycin A3, amely GC-gazdag régiókhoz kötve a kromoszómák jellegzetes festődését okozza. Alapja: a kromoszómák eltérő AT/GC aránya Kromoszóma szeparálás pl. genomikai vizsgálatokhoz lehet hasznos (kromoszóma specifikus pool-ok létrehozása genom projecthez)
J.W. Gray & L.S. Cram Normal human Human X hamster Normal hamster Normal mouse Chromomycin A3 Hoechst 33258
Homogén sejtpopulációban egy-egy sejtek valamely tulajdonságának egymás utáni megmérése, annak időbeli változására enged következtetni 1 sejtben mérve homogén populációban sejtenként mérve Megfelelő indikátor használatával lehetséges az intracelluláris Ca 2+ szignál mérése Ilyen a sejtbe „tölthető” fluoreszcens Ca 2+ indikátor festék a Fluo-3 vagy az Indo-1 Kinetikai mérések citométerrel
Fluo-3 AM – kékfénnyel gerjeszthető Indo-1 AM – UV fénnyel gerjeszthető Ezek az indikátor festékek apoláros csoporthoz kapcsoltak (pl. acetoxi-metilészter = AM), ezért képesek átjutni a sejtmembránon. A sejtben észterázok lehasítják ezeket a csoportokat, így a polárossá vált fluorokróm csapdába esik a sejtben. példa – intracelluláris Ca 2+ jel egy sejtben kimutatva: antigén prezentáló B sejt T sejtet aktivál (klikk a képre) Jelátvitelhez kapcsolódó kinetikai mérések B sejt T sejt
Ca 2+ szignál mérése áramlási citométerrel Az intracelluláris Ca 2+ szinttel arányos fluoreszcencia idő alapjel a sejtek aktiválása pl. Fluo-3 vagy Indo-1
Ca 2+ szignál mérése áramlási citométerrel Influenza vírus hemagglutinin fehérje eredetű peptidre specifikus T sejt hibridóma Ca 2+ szignálja a peptidet bemutató antigén prezentáló sejt hatására. Aktiválatlan T sejtek A sejtek aktiválásával eltelő idő (az APC és T sejt összecentrifugálása) Aktiválódott T sejtek
Imaging cytometry (Részletesebb morfológiai információk – komoly képanalízis szoftver dolgozik a háttérben) forrás: brosúra CIRKULARITÁS tükrözheti: sejtek differenciáltsága sejtosztódás vándorló sejtek
Fagocitózis vizsgálata fagocita sejtek egyszerű áramlási citometriás hisztogrammja fluoreszcens latexgyöngyök fagocitózisa után
Szeparálás eredményességét jelezi: tisztaság kinyerés avagy visszanyerés hatékonysága (veszteség) sejtek életképessége A számunkra érdekes sejtek fizikai elválasztása a heterogén populációból A különböző sejtek eltérő tulajdonságai alapján történik a szétválasztás (jó esetben ez a tulajdonság élő sejteken is megragadható – az élő sejtekkel további vizsgálatok végezhetők) fizikai – sűrűség, méret sejtbiológiai – adherencia, fagocitózis, érzékenység a közegre immunológiai – eltérő (sejtfelszíni) antigének Az immunrendszer sejtjeinek és a vér alkotóinak szeparálása
Kétféle alap hozzáállás: pozitív szeparáció – a kívánt sejtek megjelölése és kiválogatása a többi közül Pl. a sejtek valamelyik felszíni molekuláját (receptorát!) fluoreszcens ellenanyaggal jelöljük. A sejteket a szeparálási procedúra körülményei mellett a receptorához között ellenanyag direkt módon befolyásolhatja! A pozitív szeparáció viszont gyakran nagyobb tisztaságot eredményez. negatív szeparáció – a nemkívánatos sejtek megjelölése, és eltávolításuk a kívánatosak mellől (depléció) A szeparálandó (kívánatos) sejteket csak a procedúra egyéb körülményei befolyásolják. Funkcionális vizsgálatok esetében inkább ezt használják. Szeparáció A két procedúra egymással kombinálva is alkalmazható
Sejtes elemek egyszerű elválasztása a vérplazmától: Szeparáció szűréssel (egyszerű membrán v. holofiber „membrán”) Pore diameter for plasma separation: 0.2 to 0.6μm Ember esetében a vér viszonylag egyszerűen hozzáférhető „alapanyag” az immunrendszer egyes sejttípusainak izolálásához Plazma szeparálásához használják
A sűrűségkülönbség miatt az alvadás gátolt vér idővel magától is három részre szeparálódik: alul: leülepedett vörösvérsejtek felül: sejtmentes vérplazma a kettő között a vörösvérsejtekre rétegződő buffy coat fehérvérsejtek és vérlemezkék rétege A folyamat centrifugálással gyorsítható
klinikum: Ha valamelyik alkotót valamilyen célból eltávolítják Aferezis Aferezis (ógörög, ἀ φαίρεσις) -“elvétel” A szeparált komponensen kezelés végezhető és a többi komponenssel együtt visszaadható. Donációs célú aferezis Terápiás aferezis Donor aferezis: Plazmaferezis – feldolgozva (pl.IVIG) vagy friss fagyasztott plazmaként immundefficiens személyeknek vagy akut fertőzésekkor passzív immunizáláshoz Vérlemezkék (trombocitaferezis) – koncentrált formában örökletes vagy indukált trombocitopénia (fertőzések, kemoterápia, besugárzás) vagy trombocita diszfunkció esetén Vörösvérsejtek (eritrocitaferezis) - különféle anémiás betegek számára (örökletes vagy műtéti, baleseti, belső és külső vérzések esetében, sarlósejtes anémia) Leukociták (leukaferezis) – buffy-coat, főként autotranszplantációhoz pl. kemoterápiás kezelést megelőzően a leukociták védelme miatt monociták szeparálásához dendritikus sejt terápia céljára őssejt terápiás célra a csontvelői őssejtek mobilizációja után végzett leukaferezis (ugyanez az autológ és allogén csontvelő átültetés egyik lehetőségeként is szóbajöhet)
Terápiás aferezis: Vér abnormális oldott vagy sejtes komponensének eltávolítása Diszfunkcionális komponens eltávolítása és helyettesítése az egészséges donor aferezis termékeivel Vér komponensének megváltoztatása (ex vivo terápia) Leukaferezis – leukémiák esetében az extrém magas fehérvérsejtszám hemosztázis problémákhoz vezethet (nehéz légzés, látás zavarok), krónikus gyulladásos megbetegedéseknél csökkenthető vele a gyulladásos sejtek száma (ulceratív colitis, rheumatoid arthritis) LDL aferezis – pl. familiáris hiperkoleszterinémia esetében (ApoB affinitás oszloppal, vagy acetátos kémiai precipitációval) Trombocitaferezis – esszenciális trombocitémia/trombocitózis esetén (trombózisok és vérzések) a diszfunkcionális magas trombocitaszám gyors csökkentése az életveszély elkerülésére Eritrocitaferezis - pl. sarlósejtes anémiában sarlósejtes krízis felléptekor a rendellenes vvs- ek eltávolítása/cseréje Plazmacsere – autoimun betegségekben, az autoellenanyagokat tartalmazó plazma eltávolítása, és helyettesítése (immunszuppresszióval kombinálva) (pl. Myasthenia gravis, Guillain-Barré szindróma, lupus, Goodpasture szindróma, Antifoszfolipid antitest szindróma, Behcet szindróma, stb….) Immunadszorpció protein A v. G oszloppal – auto- vagy allo-ellenanyagok eltávolítása a plazmából autoimmun-, transzplantációs kilökődési- esetleg hemofíliás zavarokban protein A v. protein G oszlopon keresztül vezetéssel
Continuous Flow Centrifugation (CFC) Folyamatos áramú centrifugálás Régi típusú mosható/újra felhasználható aferezis centrifuga betét keresztmetszeti képe Folyamatos áramú aferezis rendszerek Megfelelő centrifugálási módszerrel trombociták és trombocita mentes plazma is kinyerhető
A vérből egyszerű centrifugálással szeparált fehérvérsejtek még túl „szennyezettek” vörösvérsejtekkel további vizsgálatok számára Ficoll-Paque (1.077g/ml)
(Nature Protocols (from Google pictures)
Ficoll-Paque sűrűség alapú sejtszeparáció perifériás vér vékony pipettával a sejtek alá töltött Ficoll centrifugálás szeparált, tisztított sejtek plazma ficoll vvt-k mononukleáris sejtek (MNS, PBMC) neutrofil granulociták mononukleáris sejteket tartalmazó „gyűrű” átpipettázása
Percoll – neutrofil granulociták szeparálásához lépcsős vagy folyamatos pecoll gradiensen a neutrofil granulociták is elkülöníthetőek Romanian J. Biophys., Vol. 14, Nos. 1–4, P. 53–58, Bucharest, 2004 Physical chemical characterization of Percoll. I-III. Laurent, T.C. et al. Colloid Interface Sci. 76, 124–145 (1980).
Rozettaképzés Vörösvérsejtek és más sejtek összekapcsolása ellenanyagokkal (agglutináció szerűség) Ficoll szeparálási procedúrával a rozettákba zárt sejtek elkülöníthetők a többi sejttől
Rozetta képzést felhasználva a Ficoll szeparáció felhasználható a nemkívánatos sejtek eltávolításához is Negatív szeparáció
Az adherens sejtek kinyerése vagy eltávolítása (negatív és pozitív szeparációként is alkalmazható) Olcsó, egyszerű, de csak az adherens sejtek elválasztására alkalmas, és alacsony tisztaságú
Ellenanyag ”panning” sejttípus specifikus kitapasztott ellenanyagok (negatív és pozitív szeparációként is alkalmazható)
Komplement mediált lízis sejttípus specifikus ellenanyagok komplement LÍZIS (A vörösvérsejtek enyhén hipotóniás ammónium-klorid pufferben lizálhatóak) negatív szeparáció (depléció)
Immuno mágneses sejtszeparálás - MACS (1.) paramágneses gyöngy („bead”) specifikus ellenanyag Egyszerű mágneses sejtszeparálás Fagocita sejtek apró vasszemcséket képesek fagocitálni, ezután egy erős mágnessel elválaszthatóak más sejtektől
MACS (2.)
Mágneses sejtszeparálás - MACS (3.) MÁGNES oszlop Nem jelölt sejtek kinyerése (negatív szeparáció), vagy eltávolítása (depléció) jelölt sejtek kinyerése (pozitív szeparáció) AZ ELVE KICSIT HASONLÓ AZ IMMUNSZORBENS TECHNIKÁHOZ
Mágneses szeparáló oszlopok
CliniMACS – zárt rendszerű mágneses sejt szeparátor CliniMACS ® Prodigy CliniMACS Plus
A sejteket jelölő mágneses részecskék nagyon kicsik, a sejtfunkciókat általában nem befolyásolják CD8+ T cells „DETACHaBEAD” Az mágneses részecskékkel konjugált ellenanyagok Fab része ellen termeltetett poliklonális ellenanyagokkal (amelyek valószínűleg anti-idiotipus antitesteket is tartalmaznak) elérhető, hogy leváljanak a sejtekről. (kompetíció a sejtfelszíni antigén és az anti-idiotípus ellenanyag között)
FACS (Fluorescence Activated Cell Sorting) elvileg bármely detektálható populáció kiválasztható, és elkülöníthető PMT 1 PMT 2 PMT 4 Laser Áramlási cella PMT 3 Minta fényszórás alapján specifikus fluoreszcencia alapján
CD antigénsejttípusfunkcióligand CD3T sejtek T sejt antigén receptor jelátvivő része (Intracelluláris kináz, foszfatáz) CD4helper T sejtek, (monociták, pDC) T sejt antigénreceptor koreceptora, (HIV receptor) MHC- II, HIV CD5T sejtek, (B sejt alpopuláció: B1) sejt adhézió, jelátvitel (kostimuláció) CD72 CD8citotoxikus T sejtek, (NK, T sejt alpopuláció) T sejt antigénreceptor koreceptora MHC I CD14Monociták, makrofágok, granulociták egy része LPS receptor része LPS, LBP CD19B sejtek CR2 része, B sejt antigénreceptor koreceptora C3d, C3b CD28T sejtek kostimuláció (B7-1, B7-2) CD80, CD86 CD34hematopoietikus progenitor sejt (endotheliális sejtek) sejt adhézió CD62L (L-szelektin) CD56NK sejtek, (T és B sejt alpopuláció) homoadhézió (N-CAM izoform) CD80, CD86 (B7-1, -2) professzionális APC: DC, B, monocita, makrofág kostimuláció, sejt adhézió CD28, CD152
Például: B1 sejtek elválasztása (CD19/CD5) NKT sejtek elválasztása (CD3/CD56) NK sejtek NKT sejtek limfociták Mágneses szeparálással hogyan lehetne ezt megcsinálni?
Az áramlási cella vibrációjának hatására folyadéksugár a frekvenciától függően, adott stabil helyen cseppekre bomlik breakoff point
Lézer vibráció Ha a szeparálandó sejt eléri a csepp-képződési pontot, a folyadéksugárra arra az időre elektromos töltés kapcsolódik, így a leváló csepp töltötté válik. Elektromosan töltött eltérítő lemezek Gyűjtőcső