M.Sc. Épületgépészeti képzés III. félév Vízellátás, csatornázás, gázellátás 2011. október 4., október 11. Használati melegvíz termelők kapcsolásai Cirkilációs.

Slides:



Advertisements
Hasonló előadás
Bemutatkozik a teljes AB-QM sorozat
Advertisements

EuroScale Mobiltechnika Kft
Bizalmas/A Danfoss távhő ellátás tulajdonaDanfoss távhő ellátás részlegDátum | 1| 1 districtenergy.danfoss.com 5+ millió alkalmazás világszerte Mára több,
A fűtési költségmegosztás nemzetközi gyakorlata és hazai tapasztalatai
Hoval nap május 19.- Budapest
A KÜLSŐ NYOMÁSKIEGYENLÍTÉSÜ
Hőszállítás Épületenergetika B.Sc. 6. félév március 16.
HMV-termelés, a fűtési melegvíz és a használati melegvíz elosztása
Volumetrikus szivattyúk
Áramlástani szivattyúk 2.
Hőközpont szétválasztás elemzése, pályázati tapasztalatok KEOP
© Alle Rechte bei Robert Bosch GmbH, auch für den Fall von Schutzrechtsanmeldungen. Jede Verfügungsbefugnis, wie Kopier- und Weitergaberecht, bei uns.
1. Földgázrendszer.
Villamosenergia-termelés
1. Energiagazdálkodási rendszermodell
Energiaszállítás készítette: Dékány Eszter
Hőerőművek körfolyamatainak hatásfokjavítása
Üzemi viszonyok (hidraulikus felvonók)
Soros kapcsolás A soros kapcsolás aktív kétpólusok, pl. generátorok, vagy passzív kétpólusok, pl. ellenállások egymás utáni kapcsolása. Zárt áramkörben.
EU csatlakozás tükrében (fejlesztések támogatással)
PÉLDÁK AKTUÁLIS GAZDASÁGI ÉS MŰSZAKI MEGOLDÁSOKRA A TÁVHŐ JÖVŐJE, VERSENYKÉPESSÉGE JAVÍTÁSA ÉRDEKÉBEN LAKATOS TIBOR KORONCZAI GYÖNGYI Pécs, május.
Épületgépészet 2000 II. kötet. Épületgépészet K. 2001
Dr. Balikó Sándor: ENERGIAGAZDÁLKODÁS 9. Fejlesztések.
ENERGIAGAZDÁLKODÁS 6. Energia és költségmegtakarítás tárolással dr. Balikü Sándor:
Hőigények meghatározása Hőközpontok kialakítása
Hőigények meghatározása (feladatok) Hőközpontok kialakítása
Hőszállítás Épületenergetika B.Sc. 6. félév február 16.
Hőszállítás Épületenergetika B.Sc. 6. félév március 30.
Hőszállítás Épületenergetika B.Sc. 6. félév március 23.
Épületgépészet B.Sc., Épületenergetika B.Sc.
Épületgépészet B.Sc., Épületenergetika B.Sc.
Hőigények meghatározása Hőközpontok kialakítása
Épületgépészet B.Sc., Épületenergetika B.Sc. 5. félév
Épületgépészet B.Sc. 5. félév; Épületenergetika B.Sc. 5. (6.) félév
Hőszállítás Épületenergetika B.Sc. 6. félév március 9. ISMÉTLÉS.
Hőszállítás Épületgépészet B.Sc. 5. félév; Épületenergetika B.Sc. 5. (6.) félév október 8. ISMÉTLÉS.
Épületgépészet B.Sc. 5. félév; Épületenergetika B.Sc. 5. (6.) félév
Új “Energiatakarékos” szivattyú: több mint 20% energia megtakarítás
A hálózati-mérési különbözet kezelése az elosztói engedélyeseknél
előadó: Varga Tamás MO csoportvezető
Kisfeszültségű hálózatok méretezése
Vállalati szintű energia audit
LOGISZTIKA Előadó: Dr. Fazekas Lajos Debreceni Egyetem Műszaki Kar.
Az az atomerőművek energiatermelése, biztonsága és környezeti hatásai
Energetikai gazdaságtan
Hő- és Áramlástan Gépei
Hőelvezetés.
Decentralizált energiaellátás
Csővezetékek.
Városi külső energia bevitel csökkentésének lehetőségei Energetikus energetikusok 2015 Csató Bálint Kaszás Ádám Keszthelyi Gergely.
Város energetikai ellátásának elemzése
Egy-, kétcsöves fűtések méretezése, korszerűsítése
A 7/2006 (V.24.) TNM rendelet várható következményei a távhőszolgáltatásban "Legújabb fejlesztések a hazai távhőszolgáltatásban – 2007" Regionális távhőkonferencia.
Building Technologies / HVP1 Radiátoros fűtési rendszerek beszabályozása s ACVATIX TM MCV szelepekkel SIEMENS hagyományos radiátorszelepek SIEMENS MCV.
© INTECHNICA Megújuló energiák Készült az: támogatásával Jelen prezentáció tartalmáért a teljes felelősség a szerzőket terheli. A tartalom nem feltétlenül.
Optimális hőmérséklet-menetrend Esettanulmány: épületenergetikai korszerűsítés Fűtési rendszerekben jelentkező gravitációs hatások Épületüzemeltetés Épületenergetika.
M.Sc. Épületgépészeti képzés III. félév Vízellátás, csatornázás, gázellátás február 22., 29. Használati melegvíz termelők kapcsolásai.
0 Tervezési folyamatban megjelenő trendek, tendenciák. ( Felület hűtő-fűtő rendszerek ) „Koncepció választás”, a kiviteli terv készítése előtt döntés előkészítés.
A változó tömegáramú keringetés gazdasági előnyei Távhővezeték hővesztesége Kritikus hőszigetelési vastagság Feladatok A hőközponti HMV termelés kialakítása.
Félévközi követelmények HMV hőigények meghatározása Rendszerkialakítások Vízellátás, csatornázás, gázellátás Épületgépészeti és Gépészeti Eljárástechnika.
Épületüzemeltetés Épületenergetika B.Sc. 7. félév október 19. Használati melegvíz ellátó rendszerek.
Félévközi követelmények HMV hőigények meghatározása Rendszerkialakítások Vízellátás, csatornázás, gázellátás Épületgépészeti és Gépészeti Eljárástechnika.
Folyadék áramlási nyomásveszteségének meghatározása Feladatok Jelleggörbe szerkesztés A hőellátó rendszer nyomásviszonyai (Hidraulikai beszabályozás) Hőszállítás.
Szelep választása hőcserélő tömegáram- szabályozásához Épületüzemeltetés, Készítette: Garamvári Andrea Czétány László Petróczi Zsolt.
Sugárzó fűtőrendszerek elemzése magas épületekben Magyar Energia Szimpózium – MESZ 2016 Derzsi István, Szlovák Műszaki Egyetem, Pozsony.
160 Mrd Ft energetika. Megjelent a KKV szektor megújuló épületenergetikai beruházásait támogató pályázati felhívás!
Áramlástani alapok évfolyam
Hősugárzás.
GÉPKIVÁLASZTÁS.
Előadás másolata:

M.Sc. Épületgépészeti képzés III. félév Vízellátás, csatornázás, gázellátás október 4., október 11. Használati melegvíz termelők kapcsolásai Cirkilációs rendszer méretezése

Párhuzamos kapcsolás 2. egyetlen szivattyú a tároló töltésére és a cirkuláció keringetésére a kapcsolás hidraulikai leválasztó funkcióját tudatosan elrontjuk a csúcsfogyasztás idejére leáll a cirkuláció; kiterjedt hálózatokban ez kockázatot jelent a hálózat számára a cirkuláció miatt a szivattyút nem lehet leállítani, ezért a tároló töltését el kell nyújtani a teljes csúcsidőn kívüli periódusra a töltés térfogatárama rendkívül kicsi – beszabályozási problémák! a tároló túltöltését nem lehet kizárni

A kapcsolás jelleggörbéje cirkuláció nélkül

A kapcsolás jelleggörbéje cirkulációval

A tárolót töltő és kisütő térfogatáramok

A térfogatáramok alakulása (a szemléletesség kedvéért torz ábra: nagyon nagy tároló töltő térfogatáram)

A kapcsolás méretezése 1.a HMV hőmérsékletek megállapítása (t max, t min, Δt cirk ) 2.a HMV fogyasztást leíró összefüggések meghatározása 3.a csúcsidőtartam meghatározása 4.a hőcserélő méretének megállapítása 5.a tároló méretének megállapítása 6.a cirkulációs tömegáram meghatározása 7.a cirkuláció nyomásveszteségének meghatározása 8.a tárolót fogyasztás nélküli esetben töltő térfogatáram meghatározása 9.a tárolót és a cirkulációt keringető szivattyú kiválasztása ellenőrizni kell, hogy teljesül-e a szivattyú kiválasztásához két pontot kell meghatározni a V - Δp síkon

Megfelelő szivattyú választása 1. munkapont (P’): méretezési fogyasztás 2. munkapont (P”): tároló töltés, nincs fogyasztás ( a beszabályozó szelep + vezeték együttes nyomásvesztesége – legyen lehetőleg minél kisebb!) A feladat csak akkor oldható meg, ha:

A kapcsolás méretezése 1.a HMV hőmérsékletek megállapítása (t max, t min, Δt cirk ) 2.a HMV fogyasztást leíró összefüggések meghatározása 3.a csúcsidőtartam meghatározása 4.a hőcserélő méretének megállapítása 5.a tároló méretének megállapítása 6.a cirkulációs tömegáram meghatározása 7.a cirkuláció nyomásveszteségének meghatározása 8.a tárolót fogyasztás nélküli esetben töltő térfogatáram meghatározása 9.a tárolót és a cirkulációt keringető szivattyú kiválasztása ellenőrizni kell, hogy teljesül-e a szivattyú kiválasztásához két pontot kell meghatározni a V - Δp síkon

Párhuzamos kapcsolás 3. a tároló töltését beszabályozó szelep ellenállása nem terheli a cirkulációs kört a cirkuláció bekötésének megváltoztatásával a cirkulációs térfogatáram megnövekszik; egyes cirkulációs panaszok így egyszerűen orvosolhatók csúcsfogyasztás idején nem feltétlenül áll le a cirkuláció a tároló csak tapasztalati úton szabályozható be

Kapcsolás két szivattyúval a tároló töltés és a cirkuláció egymástól függetleníthető; nincsenek kényszerkapcsolatok a tároló túltöltése elkerülhető a tárolónak csak a felső hőmérő feletti térfogata vehető figyelembe a méretezésnél a HMV hőtermelést célszerű előnykapcsolásban megvalósítani jelentős szabadság a berendezések méretének kiválasztásában

A leggyakoribb hibák a cirkulációs tömegáram megoszlása nem megfelelő ellátási panaszok a távolabbi fogyasztóknál esélytelen kísérletezgetés különböző műszaki megoldásokkal a beszabályozás megkerülésére a HMV kifolyatása, a hőmérséklet és az összes cirkulációs tömegáram növelése – jelentős víz- és energiapazarlás árán – elfedhetik a panaszokat Beszabályozatlan cirkulációs hálózat

az előremenő és cirkulációs vezetékek eltérő mérete miatt az egyes felszállók áramköreinek ellenállásában jelentős különbség van a legkedvezőtlenebb helyzetbe a legközelebbi felszálló kerül nem ad megoldást az elmaradt beszabályozásból eredő problémákra Tichelmann-kapcsolás

a hőcserélő ágában a tervezettnél nagyobb a térfogatáram ha a hőcserélő térfogatárama nagyobb a tervezettnél, és nem méretezték túl, a tervezett HMV hőmérséklet akár nem is érhető el a hőcserélő ágának térfogatárama esetleg a csúcsfogyasztásnál is nagyobb – a szivattyú folyamatosan tölti a tárolót a hőcserélőbe a hidegvíznél melegebb közeg lép be – nő a primer-tömegáram igény, nő a HMV termelés energiaigénye Hiányzó beszabályozó szelep a párhuzamos kapcsolás hőcserélőjének ágában

ha nincs a kisütés irányában megkerülő visszacsapó szelep: felesleges nyomásveszteség a HMV ellátó hálózatban ha nincsen beszabályozó szelep a hőcserélő ágban, az előző dián részletezett panaszok is fellépnek Beszabályozó szelep a tároló ágában

a tároló töltése és kisütése beszabályozható a hőcserélő ágában lévő szeleppel, de a tároló ágának kis nyomáskülönbsége miatt a cirkulációs hálózatra nem jut térfogatáram súlyos cirkulációs panaszok A cirkulációt a tároló hideg oldalára kötik; a tároló ágában nincsen beszabályozó szelep

a cirkulációs panaszokat a cirkulációnak a tároló ágában lévő beszabályozó szelep után való kötésével esetleg enyhíteni lehet

általában súlyos cirkulációs panaszok jelentkeznek, mivel a cirkulációs kör ellenállása lényegesen nagyobb A hőcserélő és a cirkulációs rendszer beszabályozása elmaradt

a két szivattyú üzeme valójában nem függetleníthető egymástól a tároló túltöltését nem lehet megakadályozni a kapcsolás hasonló az egyszivattyús kapcsoláshoz, de itt a cirkuláció nem feltétlenül áll le csúcsfogyasztás esetén működőképes kapcsolás, ami az egyszivattyúshoz képest számos többletfunkcióra képes, de nem alkalmas a túltöltés kivédésére Két keringető szivattyú van, de a tároló töltését nem lehet kikapcsolni

a kiszorításos („réteges”) tároló dugattyúszerű áramlást igényel, a hideg és melegvíz közötti minél kisebb térfogatú keveredési zónával a kevert víz hőmérséklete alacsonyabb a fogyasztó által igényeltnél; a keveredés veszteségként jelentkezik a keveredés a rontja a HMV ellátás biztonságát A párhuzamos tároló nem réteges tároló

a párhuzamos kapcsolás kiszorításos tárolót igényel a tárolóba vezetett cirkuláció elrontja a rétegződést ellátási panaszok nem feltétlenül jelentkeznek, de biztosan egyenetlen lesz a szolgáltatott melegvíz hőfoka, nő a melegvíz termelés energiafelhasználása (az esetek jelentős részében ellátási panaszok is jelentkeznek) A cirkulációt a réteges tárolóba vezetik

éjszakai fogyasztási szünetben a tároló töltés kis térfogatárama a cirkulációhoz keveredve nem képes az előremenő hőmérséklet fenntartására a HMV előremenő hőmérséket fokozatosan csökken a tároló a fokozatosan csökkenő hőmérsékletű vízzel kerül feltöltésre A cirkulációt a hőcserélő után kötik; a hőmérő a hőcserélő kilépő vizében, a keveredési pont előtt

az „utánkötött” cirkuláció energetikailag kedvezőbb (magasabb a hőcserélő hőfokkülönbsége; kisebb primer tömegáram szükséges, amit jobban ki lehet hűteni) a szivattyú előtti keveredés a pillanatnyi üzemviszonyok függvénye nagyobb holtidő: nagyobb a szabályozás nehézségi foka; a szabályozó behangolása nélkül nagy a hőmérsékletlengések kockázata hőmérsékletlengés → vízkő a tároló ágában nincs fojtás – túltöltés A cirkulációt a hőcserélő után kötik; a hőmérő a kevert vízben

fogyasztás nélküli esetben kicsi a tároló töltés, így a hőcserélő térfogatárama is; maximális, és a tároló töltésénél lényegesen nagyobb a cirkulációs térfogatáram a megfelelő előremenő hőmérséklet csak a hőcserélőn túlmelegített vízzel érhető el → súlyos vízkövesedés! A cirkuláció a hőcserélő után; a hőmérő a cirkulációval közös ágban, befojtott tárolóág

a hosszú futásidejű, behangolatlan szabályozó szelep a HMV hőmérséklet folyamatos lengését eredményezte a hőcserélő kb. 14°nk mellett is kevesebb, mint 3 hónap alatt teljesen elvízkövesedett

A HMV termelés különböző kapcsolásainak összehasonlítása

A HMV termelés szekunderoldali kialakításai

HMV rendszer kialakítása soros tárolóval

HMV rendszer kialakítása párhuzamos tárolóval

A cirkulációs hálózat kiépítése elsősorban az ellátási komfort érdekében higiéniai szempontok (Legionella) elengedhetetlen a mérés szerinti elszámoláshoz gazdasági megfontolásból: nagyobb beruházási költség szivattyúzási munka nagyobb hőveszteség a kifolyatott víz és hőtartalmának költsége ↔ A meglévő cirkulációs rendszerek helyes üzemeltetésével jelentős üzemeltetési költség takarítható meg!

A hidraulikai beszabályozás elmaradásának következményei cirkulációs tömegáram rövidre záródik a közeli ágakon elégtelen cirkulációs tömegáram, ezért súlyos hőmérséklet- panaszok a távolabbi felszállókon a szükséges HMV hőmérséklet esetleg még kifolyatással sem érhető el lehetetlen a mérés szerinti elszámolás energia- és ívóvíz pazarlás

A cirkulációs panaszok orvoslásának lehetőségei a HMV hőmérséklet emelése –vízkövesedés kockázata nagyobb teljesítményű cirkulációs szivattyú beépítése –eredmény csak „puha” rendszerekben –egyébként a térfogatáram lekering a közeli felszállókon (a térfogatáram az emelőmagasság négyzetgyökével arányosan, a keringetési munka a térfogatáram köbével arányosan növekszik) –nagyobb szivattyúzási költség – a kritikus fogyasztó helyzete érdemben nem javítható

serkentőszivattyú beépítése minimális eredmény; súlyos panaszok a szivattyú közelébe eső egyes felszállókon

az előremenő és cirkulációs vezetékek eltérő mérete miatt az egyes felszállók áramköreinek ellenállásában jelentős különbség van a legkedvezőtlenebb helyzetbe a legközelebbi felszálló kerül nem ad megoldást az elmaradt beszabályozásból eredő problémákra Tichelmann-kapcsolás

beszabályozás –fojtószakaszokkal –fojtótárcsával –beszabályozó szelepekkel –cirkulációs szelepekkel a cirkulációs alapvezeték méretének növelése, a cirkulációs felszállók méretének csökkentése –már a felszállók ellenállásának egységes növelésével jelentős javulás érhető el –eleve kevésbé kritikusak a kisebb átmérőjű cirkulációs felszállóval szerelt épületek

A beszabályozással elérhető megtakarítás A beszabályozás és szivattyúcsere egyszerű megtérülési ideje a konkrét példában kb. 10 év (csak a szivattyú villamos-energia felhasználását tekintve).

Szigetelt cső hőátbocsátási tényezője az r = r 1 → t = t 1 peremfeltételből:

hőátadás a cső belső és külső felületén: a külső és belső hőmérséklet közötti különbség:

A vezetékmenti hőátbocsátási tényező 1 méter hosszú vezetékszakasz hőleadása 1°C hőmérsékletkülönbség esetén; [k l ]=W/mK

Köszönöm a figyelmet!