Előadást letölteni
Az előadás letöltése folymat van. Kérjük, várjon
1
Szilárdságnövelés lehetőségei
Jáműanyagok 2013
2
A metastabilitások fajtái (tágabb értelemben)
Szilárdságnövelés A metastabilitások fajtái (tágabb értelemben) A METASTABIL ÁLLAPOT JELLEGE PÉLDÁK TÖBBLET ENERGIA (RTm) TÖBBLET ENERGIA J/mol) ÖSSZETÉTELLEL KAPCSOLATOS TÚLTELÍTETT OLDATOK 1 10 SZERKEZETTEL KAPCSOLATOS TÚLHŰTÖTT OLVADÉKOK, AMORF FÉMEK ÉS INTERMETALLIKUS FÁZISOK 0.5 5 MORFOLÓGIAI VAGY TOPOLÓGIAI TERMÉSZETŰ NAGY FELÜLETŰ,NANO-MÉRETŰ FÁZISDISZPERZIÓK 0.1 1
3
Milyen szilárdságnövelő mechanizmusok vannak?
Szilárdságnövelés Milyen szilárdságnövelő mechanizmusok vannak? Képlékeny alakváltozás okozta keményedés (képlékeny alakítás) (újabban: sugárzási károsodás) Oldott atomok által okozott felkeményedés (az oldott atomok tulajdonságai: Hume Rothery szabályokkal való összefüggés!) Kiválásos keményedés (precipitációs keményedés) Diszperziós keményedés Gyors hűtés okozta keményedés (quench hardening) Szemcseszerkezet finomítása
4
A fémek leglágyabb és legkeményebb
Szilárdságnövelés – képlékeny alakváltozás Pusztán a diszlokációsűrűség változásából adódó keménység (modulus) változások A fémek leglágyabb és legkeményebb állapota pusztán a diszlokációsűrűség alapján Egykristály-rekrisztallizált (lágyított) fém- plasztikusan deformált (nagy diszl. sűrűségű) állapot
5
Szilárdságnövelés – képlékeny alakváltozás
I. szakasz: rugalmas tartomány után a könnyű csúszás vagy egyszeres csúszás jelensége a domináns. szakasz: meredek, T-től független (csúszásvonalak rövidek, inhomogén deformációs tartományok). szakasz: parabolikus (nem lineáris) tartomány, kevéssé ismert diszlokációmozgási-mechanizmus, kezdete, megjelenése hőmérséklettől függ. A keményedési görbe alakja a kristályszerkezettől nagy mértékben függ!
6
Szilárdságnövelés – képlékeny alakváltozás
7
Szilárdságnövelés – képlékeny alakváltozás és szilárd oldat
8
Szilárdságnövelés – képlékeny alakváltozás és szilárd oldat
Mi határozza meg az oldékonyságot? Hume-Rothery: méret hatás, elektronegatív valenciakülönbség, rácsszerkezet Zn As Sn
9
Szilárdságnövelés – szilárd oldat
Oldott atomok, kiválások diszperziók okozta keményedési mechanizmus rokon vonásai, a különbözőségek A felkeményedés mechanizmusa:
10
Szilárdságnövelés – szilárd oldat
Hogyan értelmezhető a szakítódiagram alakja és a felkeményedés mechanizmusa közötti kapcsolat második fázis kiválása esetén? Általános sematikus mechanizmus:
11
Szilárdságnövelés – kiválásos keményedés
To görbék lefutásának meredeksége és a maximális túltelíthetőség, a megoszlásmentes megszilárdulás, az üvegképződés jelensége Milyen határesetek lehetnek? -túltelitett, kristályos szilárd oldatok képződése -fémes üvegállapot keletkezése (glassy alloys)
12
Szilárdságnövelés – kiválásos keményedés
Kiválásos folyamat egyetlen lépésben konkrét példák: Fe-alapú ötvözetekben Ti, Mo, karbidok kiválása lényeg: nagy legyen a hajtóerő! Mit kell szabályozni a kiválásos folyamat során? A kiválások mennyiségét, átlagos méretét és távolságát! Milyen eszközökkel? -koncentráció beállítása -hőkezelések hőmérséklete Hőkezelések ideje -
13
Konkrét példa túltelített oldatokból történő kiválási folyamatokra
Szilárdságnövelés – kiválásos keményedés Konkrét példa túltelített oldatokból történő kiválási folyamatokra Kiválásos keményedés - Al –ötvözetekben: itt több lépcsős a kiválási folyamat !
14
Kiválásos folyamat mechanizmusa több lépcsőben
Szilárdságnövelés – kiválásos keményedés Kiválásos folyamat mechanizmusa több lépcsőben Amikor az egyensúlyi kiválási folyamat több lépcsős Spinodális dekompozíció
15
Szilárdságnövelés – kiválásos keményedés
Több lépésben éri el a rendszer a szabadenergia minimumoz (az egész folyamat részleteiben a T,t függvénye) Guinier- Preston zónák: hosszútávú fluktuációkkal kezdődik a szilárd oldat lebomlása
16
A kiválási folyamatok értelmezése
Szilárdságnövelés – kiválásos keményedés A kiválási folyamatok értelmezése Az összetételtől is függ a folyamat végeredménye
17
Al(Cu)” nemesítési” folyamatai
Szilárdságnövelés – kiválásos keményedés Al(Cu)” nemesítési” folyamatai A keménység alakulása a hőkezelési folyamatok során
18
Szilárdságnövelés – kiválásos keményedés
Folyamat stabilizálódása Al(Cu) túltelített szilárd oldatból kiváló fázisnál
19
Stabilizálás harmadik komponenssel: Ti, Mg, B, stb Mit kellene javítani? Öntési zsugorodást, hőkezelések során történő méret és mechanikai tulajdonság változásokat csökkenteni
20
Hőkezelések hatása a szilárdságra
21
Mikro-ötvözéssel szabályozzák a kiválások eloszlását, méretét, a hőkezelés paramétereit!
Hasonló előadás
© 2024 SlidePlayer.hu Inc.
All rights reserved.