Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

AZ MHC RÉGIÓ ÁLTAL KÓDOLT GÉNEK ÉS FEHÉRJÉK. AZ IMMUNOGLOBULIN SZUPERGÉN CSALÁD TAGJAI FUNKCIÓ FELISMERÉS Ig, TCR, MHC-I, MHC-II ADHÉZIÓ ICAM-1, ICAM-2,

Hasonló előadás


Az előadások a következő témára: "AZ MHC RÉGIÓ ÁLTAL KÓDOLT GÉNEK ÉS FEHÉRJÉK. AZ IMMUNOGLOBULIN SZUPERGÉN CSALÁD TAGJAI FUNKCIÓ FELISMERÉS Ig, TCR, MHC-I, MHC-II ADHÉZIÓ ICAM-1, ICAM-2,"— Előadás másolata:

1 AZ MHC RÉGIÓ ÁLTAL KÓDOLT GÉNEK ÉS FEHÉRJÉK

2 AZ IMMUNOGLOBULIN SZUPERGÉN CSALÁD TAGJAI FUNKCIÓ FELISMERÉS Ig, TCR, MHC-I, MHC-II ADHÉZIÓ ICAM-1, ICAM-2, VCAM-1, NCAM KÖTÉS CD4, CD8, CD28, B7, IL-1RI, PDGFR, Fc  RII, poly-IgR EGY VAGY TÖBB Ig DOMÉNT TARTALMAZÓ FEHÉRJÉK V vagy C doménhez hasonló

3 AZ MHC FEHÉRJÉK SZERKEZETE  3 és  2m Ig szupergén család  2 és  2 33  2m 22 22 11 11 22 11 11 22 33 11 22 11 22 Transzmembrán Citoplazmatikus Peptidkötő hely MHC I MHC II

4 3,838,986 bp 224 gén 6 kromoszóma http://webace.sanger.ac.uk/cgi-bin/ace/pic/6ace?name=MHC&class=Map&click=400-1 MHC szekvenáló konszorcium Nature 401, 1999 AZ EMBERI MHC (HLA) TÉRKÉPE A HUMAN GENOME PROJECT ALAPJÁN

5 AZ MHC MOLEKULÁK BIOLÓGIAI FUNKCIÓJA

6 AZ MHC KORLÁTOZÁS JELENSÉGE A TCR MHC + peptid komplexeket ismer fel Egy adott TCR egy adott MHC – peptid komplex felismerésére képes Ugyanazt a peptidet egy másik MHC molekulához kötődve ugyanaz a TCR nem ismeri fel (más TCR felismerheti) Ugyanazt az MHC molekulát egy másik peptiddel együtt ugyanaz a TCR nem ismeri fel (más TCR felismerheti)

7 PEPTID 11 33 22 2m2m AZ I TÍPUSÚ MHC MOLEKULA TÉRSZERKEZETE MINDEN MAGVAS SEJTEN KIFEJEZŐDIK

8 22 11 22 11 PEPTID PEPTIDE A HIVATÁSOS ANTIGÉN PREZENTÁLÓ SEJTEKEN JELENIK MEG MÁS SEJTEKEN IS INDUKÁLHATÓ (endotél, mikroglia, asztocita) AZ II TÍPUSÚ MHC MOLEKULA TÉRSZERKEZETE

9 AZ I TÍPUSÚ MHC MOLEKULA PEPTID KÖTŐ HELYE

10 PEPTID AZ II TÍPUSÚ MHC MOLEKULA PEPTID KÖTŐ HELYE

11 Az MHC-I molekula 8-10 aminosav hosszúságú peptideket köt A PEPTIDKÖTŐ HELY GEOMETRIÁJA  m  -lánc Peptid  -lánc  -lánc Peptid Az MHC-II molekula >13 aminosav hosszúságú peptideket köt

12 A PEPTIDKÖTŐ HELY SZERKEZETE P2 és P9 nagy hidrofób zsebbe illeszkednek A „törzs” régió aminosav oldalláncai egyenletesen elosztott zsebekbe illeszkednek

13 11 33 22 2m2m 22 11 22 11 Az allélikus polimorfizmus a peptid kötő helyre koncentrálódik Az MHC polimorfizmus befolyásolja a peptid kötő képességet Az allelikus variránsok 20 aminosavban is eltérhetnek Class II (HLA-DR) Class I

14

15 DPB1*01011 TAC GCG CGC TTC GAC AGC GAC GTG GGG GAG TTC CGG GCG GTG ACG GAG CTG GGG CGG CCT GCT GCG GAG TAC TGG AAC AGC CAG AAG GAC ATC CTG GAG GAG DPB1*01012 --- --- --- --- --- --- --- --- --A --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- DPB1*02012 -T- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -A- -A- --- --- --- --- --- --- --- --- --- --- --- --- DPB1*02013 -T- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -AC -A- --- --- --- --- --- --- --- --- --- --- --- --- DPB1*0202 CT- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -AG --- --- --- --- --- --- --- --- --- --- --- --- --- DPB1*0301 -T- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -A- -A- --C --- --- --- --- --- --- --- C-- --- --- --- DPB1*0401 -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- DPB1*0402 -T- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -A- -A- --- --- --- --- --- --- --- --- --- --- --- --- DPB1*0501 CT- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -AG --- --- --- --- --- --- --- --- --- --- --- --- --- DPB1*0601 -T- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -A- -A- --C --- --- --- --- --- --- --- C-- --- --- --- DPB1*0801 -T- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -A- -A- --- --- --- --- --- --- --- --- --- --- --- --- DPB1*0901 -T- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -A- -A- --C --- --- --- --- --- --- --- --- --- --- --- DPB1*1001 -T- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -A- -A- --- --- --- --- --- --- --- --- --- --- --- --- DPB1*11011 --- --- --- --- --- --- --- --- --A --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- C-- --- --- --- DPB1*11012 --- --- --- --- --- --- --- --- --A --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- C-- --- --- --- DPB1*1301 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- DPB1*1401 -T- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -A- -A- --C --- --- --- --- --- --- --- C-- --- --- --- DPB1*1501 --- --- --- --- --- --- --- --- --A --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- C-- --- --- --- DPB1*1601 -T- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -A- -A- --- --- --- --- --- --- --- --- --- --- --- --- DPB1*1701 -T- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -A- -A- --C --- --- --- --- --- --- --- --- --- --- --- DPB1*1801 -T- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -A- -A- --- --- --- --- --- --- --- --- --- --- --- --- DPB1*1901 -T- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -AG --- --- --- --- --- --- --- --- --- --- --- --- --- DPB1*20011 -T- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -A- -A- --C --- --- --- --- --- --- --- C-- --- --- --- DPB1*20012 -T- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -A- -A- --C --- --- --- --- --- --- --- C-- --- --- --- DPB1*2101 CT- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -AG --- --- --- --- --- --- --- --- --- --- --- --- --- DPB1*2201 CT- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -AG --- --- --- --- --- --- --- --- --- --- --- --- --- DPB1*2301 -T- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- DPB1*2401 -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -AG --- --- --- --- --- --- --- --- --- --- --- --- --- DPB1*2501 -T- -T- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -A- -A- --- --- --- --- --- --- --- --- C-- --- --- --- DPB1*26011 --- --- --- --- --- --- --- --- --A --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- DPB1*26012 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 30 HLA-DP  allél szekvenciája a 204 és 290 nukleotidok (35-68 aminosavak) közötti szakaszon A legtöbb polimorfizmus pont mutáció következménye Y-F A-V Silent A-D A-E E-A I-L A polimorf nukleotidok a peptidkötő helyhez tartoznak

16 Klasszikus MHC gének POLIMORF HLA – Human Leukocyte Antigen rendszer HLA –A,B, C I osztály MINDEN MAGVAS SEJTEN HLA – DR, DP, DQII osztály HIVATÁSOS ANTIGÉN PREZENTÁLÓ SEJTEKEN Nem- klasszikus MHC gének E, G, F 6 kromoszóma rövid karjaMHC 15 kromoszóma  2m AZ MHC GÉNEK ELHELYEZKEDÉSE III osztály

17 AZ MHC MOLEKULÁK SZÖVETI MEGOSZLÁSA Szövet MHC I MHC II T sejt+++ +/- B sejt+++ +++ Makrofág+++ ++ Dendritikus sejt+++ +++ Tímusz epitél sejtek + +++ Neutrofilek+++ - Hepatociták + - Vese + - Agy + - Eritrocita -- A sejt aktiváció befolyásolja az MHC expressziót A szöveti kifejeződés jól tükrözi az MHC molekulák funkcióit Az I osztályú MHC molekulák a vírus és tumor ellenes immunitásban fontosak A II osztályú MHC molekulák az immunrendszer sejtjeinek aktiválásában, együttműködésében játszanak szerepet

18 AZ I ÉS II OSZTÁLYÚ MHC GÉNEK ÖRÖKLŐDÉSE HUMAN LEUKOCYTE ANTIGEN HLA EVERY CELL α1β1α1β1α2β2α2β2 PROFESSIONAL APC I osztály II osztály

19 FELTÉTELEZÉS Minden egyed 6 I típusú MHC molekulát fejez ki Az összes MHC allotípus elvileg véletlenszerűen oszlik el a populációban Az 1 200 különböző allél bármely másik alléllal együttesen fordulhat elő AZ MHC MOLEKULÁK POLIMORFIZMUSA AZ EMBERI POPULÁCIÓBAN ? ~6 x 10 15 egyedi kombináció Csak az egypetéjű ikrek HLA lókuszai megegyezőek Az emberi populáció nagyon kevert (outbred) Az MHC genetika nagyon összetett POLIGENITÁS, POLIMORFIZMUS

20 A klasszikus MHC gének kapcsoltan, haplotípusokban öröklődnek BCADPDQDR BCADPDQDR BCADPDQDR BCADPDQDR X Szülők DP-1,2 DQ-3,4 DR-5,6 B-7,8 C-9,10 A-11,12 DP-9,8 DQ-7,6 DR-5,4 B-3,2 C-1,8 A-9,10 DP-1,8 DQ-3,6 DR-5,4 B-7,2 C-9,8 A-11,10 DP-1,9 DQ-3,7 DR-5,5 B-7,3 C-9,1 A-11,9 DP-2,8 DQ-4,6 DR-6,4 B-8,2 C-10,8 A-12,10 DP-2,9 DQ-4,7 DR-6,5 B-8,3 C-10,10 A-12,9 BCADPDQDR BCADPDQDR BCADPDQDR BCADPDQDR BCADPDQDR BCADPDQDR BCADPDQDR BCADPDQDR Gyerekek

21 AZ MHC MOLEKULÁK SAJÁT VAGY ANTIGÉN EREDETŰ PEPTIDEKET KÖTVE JELENNEK MEG A SEJTFELSZÍNEN B-sejt, makrofág, dendritikus sejt Vese epitél sejt Máj sejt Bemutatják a sejt belső környezetét Bemutatják a sejt belső és külső környezetét I. típusú MHC A citoszólból és a sejtmagból származó adott méretű peptidek II. típusú MHC Membrán fehérjékből és az MHC molekulákból (70%) származó peptidek

22 A FERTŐZÉSEK KIMENETELE EGY ÉS TÖBB POLIMORF MHC GÉN ESETÉN v Példa: Ha csak egyféle MHC molekula (MHC X) lenne a populációban A populációt a kihalás fenyegetné A patogén kikerüli az MHC X általi felismerést MHC XX Többféle MHC-Gén v v v v v v v v v v v v vvv v v v v v v v v v A populáció védett V – vírus fertőzés által okozott kár

23 Mi az előnye az MHC típusok sokféleségének? A patogén mikroorganizmusok osztódása lényegesen gyorsabb, mint az emberi reprodukció Adott idő alatt a patogén gének sokkal gyakrabban mutálódnak, mint az emberi gének és ezáltal gyakran kikerülhetik az MHC gének változásait Az MHC típusok száma korlátozott A patogének flexibilitásával szemben A populációban minden MHC típus sok variánst hoz létre Ezek a variánsok nem feltétlenül nyújtanak védelmet minden egyed számára, de védik a populációt a kihalástól

24 Az MHC típusok és variánsok molekuláris magyarázata POLIMORFIZMUS >1% variábilitás egyetlen genetikai lókuszon a populációban az MHC-k a ma ismert leginkább polimorf gének Az MHC molekulák típusai és variábilitásai nem változnak az egyed élete folyamán Az MHC molekulák diverzitása populáció szinten érvényesül, szöges ellentétben a T és B sejt antigén receptorok diverzitásával, melyek egy egyeden belül érvényesülnek POLIGENITÁS Számos MHC I és II gén kódol különböző típusú MHC molekulákat eltérő peptid-kötő specificitással

25 AZ MHC FUNKCIÓI KLASSZIKUS MHC GÉN TERMÉKEK –Saját fehérjékből származó peptidek prezentálása – immunológiai saját folyamatos megjelenítése –Az immunológiai saját meghatározása Saját MHC + saját peptid – egyedekként változó MHC és saját peptid –Antigénből származó peptidek prezentálása – idegen/megváltozott saját felismerése –Az immunológiailag idegen meghatározása Saját MHC + idegen peptid – egyedekként változó MHC és idegen peptid –Allogén válasz idegen MHC-val szembeni válasz (transzplantáció) Az MHC által korlátozott T-sejt felismerés következménye –A T-limfociták differenciációja és szelekciója a tímuszban –A T-limfociták életben tartása a periférián –Az NK sejt felismerés célpontja NEM KLASSZIKUS MHC GÉNEK –Specializált funkciók A KLASSZIKUS MHC GÉNEKKEL SZERKEZETI ROKONSÁGOT MUTATÓ FEHÉRJÉK

26 ANTIGÉN PREZENTÁCIÓ

27 Hogy képes 6 nem variábilis MHC molekula 1,000,000,000,000,000 különböző peptidet kellő erőséggel megkötni? Hol történik a peptid kötés? A T sejtek antigén felismerő receptorainak becsült száma 1,000,000,000,000,000 (10 12 - 15 ) Ennyi különböző antigén eredetű peptid

28 Flexibilis kötőhely? A sejtfelszínen az ilyen kötőhely nem lenne képes elég nagy erősséggel kialakítani az MHC – peptid – TCR hármas komplexet megakadályozni a peptidek lecserélődését extracelluláris peptidek által Olyan kötőhely, amely elég rugalmas bármely peptid megkötésére?

29 Flexibilis kötőhely? A kötőhely kialakulásának kezdeti, intracelluláris szakaszában a peptid irányítja az MHC molekula térszerkezetét Laza, rugalmasZárt Egy adott MHC molekula számára lehetővé teszi, hogy sok különböző peptiddel lépjen kapcsolatba a peptidet s sejtfelszínen nagy affinitással kösse stabil komplexeket képezzen a sejtfelszínen csak olyan molekulákat szállítson a sejtfelszínre, amelyek intracellulárisan peptidet kötöttek

30 MHC molekulák Amíg a peptid kötés nem történik meg, flexibilis konformációt vesznek fel A peptidkötést konformáció változás kíséri, ami növeli a komplex stabilitását A megkötött peptid hozzájárul az MHC – peptid komplex konformációjának stabilizálásához A peptid „befogására” kevés horgonyzó aminosav szolgál - a horgonyzó aminosavak közt különböző szekvenciák lehetnek - különböző hosszúságú peptidek kötődhetnek IGEN, DE HOGYAN kerül a peptid az MHC molekula zsebébe?

31 A sejten belül két egymástól membránnal elválasztott kompartment van jelen: 1) citoszol, 2) vezikuláris rendszer

32 AZ ENDOGÉN ANTIGÉN BEMUTATÁSI ÚT Tc-sejt Proteaszóma LMP2/LMP7 FEHÉRJE SAJÁT ANTIGÉN TAP1/2 calnexin α-lánc α-lánc+β2mMHC+peptid MHC-I + Ag peptid MHC-I + saját peptid ZÁRTNYITOTT MHC-I, LMP2/7, TAP IFN  általi koordinált kifejeződés

33 Endogén proteinek degradációja az (immun)proteoszómákban TAP: Transporter associated with antigen processing

34 ER membrane Lumen of ER Cytosol Transporters associated with antigen processing (TAP1 & 2) A transzporter 8 aminosavnál hosszabb, hidrofób C-terminálissal rendelkező peptideket pumpál be az ER-ba TAP-1 TAP-2 Peptide TAP-1 TAP-2 Peptide TAP-1 TAP-2 Peptide TAP-1 TAP-2 Peptide TAP-1 TAP-2 Peptide TAP-1 TAP-2 Peptide TAP-1 TAP-2 Peptide TAP-1 TAP-2 Peptide TAP-1 TAP-2 Peptide TAP-1 TAP-2 Peptide ER membrán ER lumen Citoplazma TAP-1 TAP-2 Peptide ATP-binding cassette (ABC) domén Hidrofób transzmembrán domén Proteaszóma által termelt peptid antigének

35 A peptid/MHC kapcsolat kialakulását több fehérje is segíti

36 A peptidek fazonra igazítása az ERAP enzim által

37 A citoszol-eredetű peptideket az MHCI receptorok mutatják be a T-sejteknek

38 Th-sejt INVARIÁNS LÁNC (Ii) 1.Chaperon – konformáció 2.Peptidkötőhely gátlása 3.Szállító/visszatartó molekula AZ EXOGÉN ANTIGÉN BEMUTATÁSI ÚT DMA/DMB 1. A peptidet befogadó konformáció fenntartása 2. A CLIP és az exogén fehérjékből származó peptidek lecserélése ZÁRTNYITOTT Ii+αβ CLIP DMA/B MHC-II + Ag peptid MHC-II + saját peptid

39 Az invariáns lánc megvédi az MHCII kötőhelyét amíg az a megfelelő sejt kompartmentet eléri INVARIÁNS LÁNC (Ii) 1.Chaperon – konformáció 2.Peptidkötőhely gátlása 3.Szállító/visszatartó molekula DMA/DMB 1. A peptidet befogadó konformáció fenntartása 2. A CLIP és az exogén fehérjékből származó peptidek lecserélése

40 Az exogén-eredetű peptideket az MHCII receptorok mutatják be a T-sejteknek

41 Az extracelluláris és intracelluláris eredetű antigének bemutatása

42 MHC IMHC II Kötött peptidforrássaját vagy idegen fehérjék méret8-10 aminosav13-25 aminosav heterogenitáskorlátozottátfedő peptidek természetescitoplazmatikus és magi fehérjék~70% MHC eredetű, membrán- és extra- celluláris fehérjék Peptid képződéshelyecitoplazmavezikulumok endo/lizoszóma enzimekproteaszóma LMP-2, LMP-7 szabályozó egységek savas proteázok katepszinek transzportTAP – peptid méret C-terminális cytoplasm ER nincs MHC transzport nincsIi - irányít, visszatart ER vezikuláris rendszer speciális vezikulum CIIV MHC - peptide kölcsönhatáshelyeERspeciális vezikulum, CIIV chaperonokcalnexin, calreticulin, tapasin, ERp57 PDI Ii, DMA/B MHC - peptid komplexek a sejtfelszínen stabil komplexek a sejt belső környezetét tükrözik kevés nem stabil üres molekula nincs peptid disszociáció, csere stabil complexek a sejt belső/külső környezetét tükrözik kevés recirkuláló és CLIP-peptidet kötő molekula ANTIGEN ÁTALAKÍTÁS ÉS BEMUTATÁS

43 Klasszikus MHC gének POLIMORF HLA – Human Leukocyte Antigen rendszer HLA –A,B, C I osztály MINDEN MAGVAS SEJTEN HLA – DR, DP, DQII osztály HIVATÁSOS ANTIGÉN PREZENTÁLÓ SEJTEKEN Nem- klasszikus MHC gének E, G, F 6 kromoszóma rövid karjaMHC 15 kromoszóma  2m AZ MHC GÉNEK ELHELYEZKEDÉSE III osztály

44 AZ MHC EGYÉB GÉNJEI (nem klasszikus) nem polimorf Ib MHC gének I típusú,  2 mikroglobulinnal asszociált MHC szerű molekulák Korlátozott szöveti kifejeződés HLA-G trofoblaszt, kapcsolódik a CD94 NK-sejt receptorhoz, gátolja a magzat és tumorok NK-sejt általi pusztítását HLA-E bizonyos sejtek membránján, HLA-A, B, C gének szignál szekvenciáját köti, kapcsolódik a CD94 NK-sejt receptorhoz HLA-F magzati máj, eozinofil felszín, ismeretlen funkció MHC II régió Az antigén feldolgozásban szereplő géneket kódolnak HLA-DM  hivatásos APC-ben Proteaszóma komponensek (LMP-2 és 7), peptid transzporterek (TAP-1 és 2) Sok pseudogén MHC III régió Komplement fehérjék kódolása C4A és C4B, C2 és B FAKTOR TUMOR NEKRÓZIS FAKTOR-  Immunológiailag irreleváns gének 21-hidroxiláz, RNA helikáz, kazein kináz hősokk fehérje 70, szialidáz


Letölteni ppt "AZ MHC RÉGIÓ ÁLTAL KÓDOLT GÉNEK ÉS FEHÉRJÉK. AZ IMMUNOGLOBULIN SZUPERGÉN CSALÁD TAGJAI FUNKCIÓ FELISMERÉS Ig, TCR, MHC-I, MHC-II ADHÉZIÓ ICAM-1, ICAM-2,"

Hasonló előadás


Google Hirdetések