Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Lavinák 2. Instabilitások lejtőn való áramlásban; mágneses lavinák Lajkó Miklós negyedéves mérnök-fizikus hallgató.

Hasonló előadás


Az előadások a következő témára: "Lavinák 2. Instabilitások lejtőn való áramlásban; mágneses lavinák Lajkó Miklós negyedéves mérnök-fizikus hallgató."— Előadás másolata:

1 Lavinák 2. Instabilitások lejtőn való áramlásban; mágneses lavinák Lajkó Miklós negyedéves mérnök-fizikus hallgató

2 A tartalomból Szemcsés anyagok lejtőn –Megfigyelt jelenségek –Két kísérlet részletesen (Ellenőrző szimulációk) Mágneses térbe helyezett részecskék –Mi ez? Miért jó? –Egy szimuláció –Jelenségek magyarázata –(Összevetés kísérletekkel)

3 Az áramlási front instabilitása Hullámfrontban ‘ujjak’ jelennek meg. Csak akkor, ha a részecskék mérete nem volt egységes. A részecskék méret szerinti szétválása kulcsfontosságú Nagyobb részecskék összegyűlnek Lassítják az áramlást

4 Örvények lejtőn való áramláskor* Lejtő érdes felülettel Homok (d=0.25±0,03mm) Változtatható paraméterek –H g (beömlőnyílás magassága) –Θ (lejtő szöge) *Forterre & Pouliquen: Phys Rev.Lett. 86 p5886

5 Jelenségek: Bizonyos paraméterek mellett hosszanti hullámok jelennek meg. A kifejlődött mintázatban: λ≈3h h csak kismértékben változik a különböző hajlásszögek mellett. (a mintázat vándorol, de ez lassú folyamat)

6 Sebességtér vizsgálata : –Fekete szemek + CCD +PIV (Csak a felszínen mozgó részecskéket látjuk, de a többit majd kitaláljuk valahogy ) Következtetés : Hossztengelyű örvények

7 Sűrűségeloszlás (kitöltési tényező) vizsgálata Összegyűjtve a részecskéket vagyis híg rendszerekben fordul elő ez a jelensség Alulról megvilágítva + CCD kamera: Köv.: A „völgyekben” van a részecskék többsége

8 Magyarázat a látottakra Érdes meder →részecskék ütköznek a mederrel→ alul nagyobb hőmérséklet→ kisebb sűrűség→instabil állapot→ beindulnak az örvények Hasonló jelenség folyadékoknál: Rayleigh-Bénard Szimulációk alapján az inverz sűrűségeloszlás valóban instabil keresztirányú zavarokkal szemben.

9 Instabilitások nyírási felületen* Két különböző sebességű áramlás érintkezési felületét vizsgáljuk. Részecskék csak színben különböznek Változtatható paraméterek Θ (lejtő hajlásszöge) Adagolók kiömlőnyílásának mérete (Részecskeadagolók magassága~kezdeti sebesség) *Goldfarb et al.: Nature 415 pp. 302

10 Θ=28 o Θ=24 o Θ=20 o Megfigyelt jelenség

11 Különféle változtatások hatása Szitált homok, üveggyöngy Oldalfalakra súrolópapír Érdes meder A csúszda rezgetése Ritkábbak a hullámok és a hullámnyelvek. Nem befolyásolja a jelenséget Magasabb szögeknél jelenik meg a fodrozódás Nem befolyásolja a jelenséget

12 Elvégzett mérések Hullámzás szögfüggése Θ c -nél hirtelen ugrás a hullám- amplitúdóban, és a szórásában is Elnyúlás vizsgálata Kisebb hajlásszögnél kisebb a gyorsulás is

13 Elméleti megfontolások 1. Modell: Ilyen sebességtérrel számolva, egy kezdetben sima találkozási felületből kapjuk:

14 Magyarázat a látottakra Két egymással vetélkedő hatás Sebességeltérés miatti nyírás→ Elnyúlás stabilizáló hatása→ Dimenziótlan paraméter

15 Mágnesezhető részecskék Alapötlet Részecskék külső mágneses térben Dipól-dipól kh. a részecskék között Anizotrop kohéziós erő Tulajdonságok –Könnyű változtatni a kh. erősségét –”Nem ázik el minden” –Anizotrop kh. (forgatva a teret ez javítható)

16 Mágneses tér hatása részecskehalmokra (szimuláció)* Állandó külső mágneses tér →dipól-dipól kölcsönhatás: Maximális erő: Minél nagyobb f, annál nagyobb az összetartó erő *Fazekas et. al.: Phys Rev. E 65.pp 022301

17 A szimuláció beállításai f ≤ 24 Mágneses kh. levágása: 6.25D-nél Részecskék ütközése: Hertz- kontaktus Csúszási súrlódás: Háromféle szimuláció az új részecskét beejtjük Behelyezzük beejtjük + elő és hátlap figyelembevétele

18 Rézsűszög és a felület érdességének vizsgálata Lineáris függés a kísérletekkel összhangban H=0 mellett a rézsűszög eltér a kísérletekben tapasztaltaktól Kísérletekben kis f-re (≤1) nemlineáris viselkedés a rézsűszögnél

19 Lavinák vizsgálata Mágneses tér nélkül: –A lavinák méretének és idejének eloszlása: γ=0,43

20 Lavinák vizsgálata Mágneses tér mellett –Különböző viselkedés kis és nagy f-k mellett f<7 → egymás utáni láncok f>7 → ritkább, de nagyobb lavinák (több láncból álló fürtök)

21 Magyarázat a lavinák méretére Vizsgáljuk, hogy megéri-e energetikailag egy ν vastag réteg leválása? Az illesztett egyenes ν =1+f / 6 Köv.: f ≥ 6 -nél válhat le több láncból álló fürt (csak óvatosan, ez csak egy egyszerű becslés)

22 Lavinák mérete és ideje f<7: Időtartam: τ ~ s/f (arányos az egymás utáni kis láncok számával) Méret szerinti eloszlás összeskálázható :

23 Lavinák mérete és ideje f>7: Időtartam: (itt látszik, hogy ν nem nő f-fel) Időtartam eloszlása: összeskálázható eloszlások

24 Összefoglalás: Megnéztünk pár kísérletet, megértettük a jelenségek okát, és mechanizmusát. –Ujjak –Örvények –Hullámok Megismerkedtünk egy vizsgálati módszerrel –Megvizsgáltunk egy szimulációt –Használtuk egy jelenségkör megismerésére

25 Köszönöm a figyelmet


Letölteni ppt "Lavinák 2. Instabilitások lejtőn való áramlásban; mágneses lavinák Lajkó Miklós negyedéves mérnök-fizikus hallgató."

Hasonló előadás


Google Hirdetések